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ABSTRACT 
 

Purposive sampling is described as a random selection of sampling units within the 
segment of the population with the most information on the characteristic of interest. The 
procedure effectively assigns zero probability of inclusion to units towards the tails of the 
distribution believed to have minimal information or none at all. This sampling strategy is 
shown to be optimal under the Bayesian framework.  Simulation of the posterior risk indicate 
lower risk levels of  the sample mean as estimator under purposive sampling relative to those 
under simple random sampling. This was consistently shown under the squared error loss 
function as effects of parameters of the posterior risk on its level were simulated. 
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1. INTRODUCTION 
 

 
While probability sampling is the usual prescription in data generation for statistical 

inference in finite populations, nonprobability sampling is often the only recourse due to the 

nature of the population and the constraints faced in accessing the sampling units.  Such 

populations include those that are difficult to define, locate, or recruit and those populations 

wherein some units may provide more information than the rest (relative to a characteristic of 

interest).  Purposive sampling would suitably generate samples informative of the population 

constrained by peculiar behavior as stated above.  In purposive sampling, the researcher’s 

knowledge about the population is used to select the units to be included in the sample. In this 

study, purposive sampling is defined as random sampling from the most informative segment 

of the population. 

 

Though bias is eminent in purposive samples, a certain degree of optimality is 

anticipated since the selection scheme would suitably fit in the Bayesian framework. Zacks 

(1969) shows that, generally, the optimal Bayes selection is a sequential one and 



nonrandomized and proves that it is without replacement. In certain cases, the optimal Bayes 

sampling designs are nonrandomized and single-phase ones. A single-phase design is any 

design in which the units are drawn directly from the population. Zacks proves that any 

nonrandomized single-phase sampling plan without replacement is optimal if the posterior 

risk is independent of the observed values. 

 

In this paper, we prove that purposive sampling satisfies the above condition and 

assess this optimality by simulating the posterior risk and comparing this to that under a 

design-unbiased sampling plan (i.e., simple random sampling).  In the process, the important 

parameters that need to be considered when using purposive sampling are also examined. 

 
 

2. PROVING THE OPTIMALITY OF PURPOSIVE SAMPLING 
 

Consider a normal population. Let the variable of interest be X, X ~  2 2, ,N    is 

known.  Suppose we do purposive sampling.  Say, we believe that the true mean of  X  is also 

normal with mean  µ and some variance 2.  That is, θ ~  2, .N     Consequently, we 

purposively select our sample in the vicinity of  by intentionally excluding those in the tails 

of the distribution, i.e., assigning zero inclusion probability to the units towards the tails of the 

distribution. Then our sample is generated from a “new” population with a relatively small 

variance, 
2

,  1.a
a


   The variable of interest in the “new” population, ,X  is now distributed 

as X   ~ 
2

, .N
a



 
 
 

  We are interested in estimating .  To find the posterior Bayes risk (or 

posterior risk for short) associated with estimating  , we need first to find the posterior 



distribution of    (or  posterior distribution for short) given the sample observations .x


  We 

initially work with ,x  a sample observation,  to facilitate the derivation. 

 

2.1 THE POSTERIOR DISTRIBUTION  

 

 Under purposive sampling, the sampling distribution is  
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The prior distribution of    is 
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The joint probability density function of X  and   is 
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 We re-express the above formulation to make it easier to find the marginal density of 

 ,  ,X m x   as follows:  

 

Working on the expression    2 2
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 (Berger, 1985) gives 
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Hence, our new expression for  ,f x   is 
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To find the marginal distribution of ,X  we have 
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Thus, X   ~  2 2,N      marginally. 

 

The posterior distribution of   given the sample xwill then be  

   
 

 
 

 
 

2 2

2 2 2 2

2

2 2

1 1 1 1exp exp
2 2 2,

|
1 1exp

22

xx
f x

x
m x x

 
      

 


  

                              
       

 

 
 

21

1/ 2 2 21/ 2

2 1 1exp
22

x  
   



 

              
   

2

2 2
1

1 1exp1 122

x
  




            
 
 
 

.  

Thus, the posterior distribution of  given the sample x is 2 2
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 the mean and variance of this distribution can be simplified to 
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distribution is to be taken, then we need 

the posterior distribution of   given  1,..., .nx x x  


 Since X   is sufficient for ,  it follows 

from Lemma 1 (Berger, 1985) that    | | .x x    


 Noting that X  ~
2
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 it can 

be concluded from  | x   that the posterior distribution of    given x


  will be normal with 

the following parameters: 
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With 
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  we can also express the posterior mean as 
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where   is the summation notation, summing over all values in the sample. 



 
 

2.2   THE POSTERIOR RISK 
 

Given the target variable X , the squared error loss is    2, ,l k k   where 

 k d x is the decision or action taken to estimate   (Carlin and Louis, 1996).  Under 

purposive sampling with target variable X   and  d x x  , we are determining the average 

loss of the estimator x  with respect to the posterior distribution of    given the sample x


 

when we find this posterior risk (Mood et al., 1974).  

 

We now find the posterior risk under purposive sampling, the risk of estimating   

with the sample mean, denoted by  , ,g x   as follows (Carlin and Louis, 1996): 
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To facilitate the evaluation of the posterior risk, the above function is expressed in 

terms of matrix parameters of the normal distribution where θ is known to be an n -

dimensional normal random vector.  Thus, 


 ~  , ,nN  


where   is the  x 1n  mean vector 

and 


 is the  x n n  covariance matrix, 0. 
 

 Then, we can write the posterior risk as an 

expression involving matrices: 
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Evaluating this expression at 1,n   we have 
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Evaluating each of the three integrals: 
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We note that the resulting expression does not depend on the observed sample values. 

Since the posterior risk satisfies the sufficient condition for optimality by Zacks (1969), the 

purposive sampling described in this study is an optimal Bayesian sampling plan.   

  

Under simple random sampling, the posterior risk using squared error loss is parallel 

to that under purposive sampling since we have X ~  2,N    under simple random sampling 

while we have X   ~ 
2
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, a > 1 under purposive sampling, with the prior distribution 

of    the same for both sampling designs, θ ~  2, .N    Thus, the posterior distribution of  

  given the sample x


 will be normal with the following parameters: 



 

2

2

2 2
2 2

|   nE x x

n n




 
  

   
   

    
       
   


 

 

2
2

2 2

2 2 2
2

1| .nV x
n

n

   


   


  


 

With 
2 2

2 2 ,n 


 
   we can also express the posterior mean as follows: 
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The posterior risk using squared error loss under simple random sampling is then determined 

similarly: 
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3.  SIMULATION RESULTS  
 

 
The optimality of purposive sampling is further assessed by comparing  



its posterior risk with that of a design-unbiased sampling plan  (simple random sampling).  

This is done as the effects on the posterior risk of its parameters are examined. 

 
 

3.1   EFFECT OF a  ON THE POSTERIOR RISK 

 Suppose we let X  be  , 25N  and θ be  10,15N . That is, 2 25,  10,   and  

2 15.  With X   distributed as 25, ,N
a

 
 
 

we compute the posterior risk of the sample mean 

as the estimator of   using the squared error loss function as we let a  vary from 1 to 250.  

The value of a reflects the confidence of the sampler on the probable location of the true mean 

where sample selection may be focused on.  Small a means selection from a wider range of 

values while large a implies selection in a shorter range of values.  We take a sample of size 1 

with observed values of 8 representing a number below the prior mean of , 10 exactly the 

same as the prior mean of  , and 12 a number above the prior mean of  .    

 

Note that at 1,a  when X ~  , 25N  is the sampled population, a simple random 

sample is drawn.  At 2,a   the sample is drawn from X   ~  ,12.5N  , a purposive selection 

since the sampling population is constrained to be about “half” the size of the initial 

population. This effectively ignores the tails of the distribution since the sampler thinks that it 

will be less likely that the true mean is located in the tails. At 2,a   we are taking purposive 

samples from increasingly more homogeneous populations.  TABLE I gives the behavior of 

the posterior risk under these situations. 

 



TABLE I: Effect of a on the posterior risk using squared error 
loss function when 2 25, 10,   and 2 =15 at 

1.n   
Posterior Risk (a) Value of 

a  8x   10x   12x   
1 10.94 9.38 10.94 
2 7.64 6.82 7.64 
5 4.00 3.75 4.00 

10 2.22 2.14 2.22 
25 0.95 0.94 0.95 
50 0.49 0.48 0.49 
100 0.25 0.25 0.25 
125 0.20 0.20 0.20 
250 0.10 0.10 0.10 

(a) Using equation (2.1). 

 

All observed values yield a decreasing average risk or loss of the sample mean as the 

population becomes more homogeneous or compact. By the nature of the loss function, 

observed values of the same distance from the prior mean of   have the same risk. Also, the 

risk level was lowest when the observed value was equal to the prior mean of  , except at a ≥ 

100 when all risk levels became equal. 

 

The average risk of the sample mean decreased substantially from 1 to 2a a  .  This implies 

that the average loss of the sample mean in estimating   with respect to the posterior 

distribution of    given the sample is reduced under purposive sampling when the sampled 

population is more homogeneous. The sampler will be in a less risky situation when samples 

are drawn as closely as  

possible to the prior mean.  

 
 
3.2 EFFECT OF 2 ON THE POSTERIOR RISK 

 



 Suppose we allow the variance of the variable of interest, 2 ,  to vary from 1 to 250. 

We again compute the posterior risk with the sample mean as the estimator of   using the 

squared error loss function.  TABLE II shows the results at selected values of  2 .  

 
TABLE II:  Effect of 2 on the posterior risk using squared error loss 

function when 210 and 15    at  1.n   
Posterior Risk (a) 

1a   2a   
Value of 

2  
8x   10x   12x   8x   10x   x=12 

1 0.95 0.94 0.95 0.49 0.48 0.49 
2 1.82 1.76 1.82 0.95 0.94 0.95 
5 4.00 3.75 4.00 2.22 2.14 2.22 
10 6.64 6.00 6.64 4.00 3.75 4.00 
25 10.94 9.38 10.94 7.64 6.82 7.64 
50 13.91 11.54 13.91 10.94 9.38 10.94 

100 16.07 13.04 16.07 13.91 11.54 13.91 
125 16.58 13.39 16.58 14.70 12.10 14.70 
250 17.71 14.15 17.71 16.58 13.39 16.58 

(a) Using equation (2.1). 
    

 The average loss of the sample mean decreased substantially as the population 

variance was reduced from 25 down to 1 at all observed values under the two sampling 

designs.  When the population variance was increased from 25 up to ten times its initial level, 

the average loss of the sample mean increased substantially for both sampling designs. When 

the observed value was equal to the prior mean of  , the average losses were the lowest, 

similar to the effect of a on the posterior risk. 

 
 
3.3   EFFECT OF 2  ON  THE POSTERIOR RISK 
 

 
Suppose we allow the prior variance of  θ  to vary from 1 to 150 with the prior mean 

of θ fixed at 10. We compute the posterior risk using the mean as the estimator of   θ under 

the squared error loss function.  TABLE III gives the results at selected values of 2 . 



 
TABLE III:  Effect of 2  on the posterior risk using squared error 

loss function when 10    and 2 25   at 1.n   
Posterior Risk (a) 

1a   2a   
Value of 

2  
8x   10x   12x   8x   10x   12x   

1 4.66 0.96 4.66 4.36 0.93 4.36 
2 5.28 1.85 5.28 4.70 1.72 4.70 
5 6.94 4.17 6.94 5.61 3.57 5.61 
10 9.18 7.14 9.18 6.79 5.56 6.79 
15 10.94 9.38 10.94 7.64 6.82 7.64 
25 13.50 12.50 13.50 8.78 8.33 8.78 
50 17.11 16.67 17.11 10.16 10.00 10.16 
75 19.00 18.75 19.00 10.80 10.71 10.80 

100 20.16 20.00 20.16 11.16 11.11 11.16 
150 21.51 21.43 21.51 11.56 11.54 11.56 

(a) Using equation (2.1). 

 

The effect of 2  on the average loss of the sample mean is seen to be similar to that of 

2 . As the prior variance of θ increased so did the average loss of the sample mean for the 

three observed values under both sampling designs.   

 
 

3.4   EFFECT OF SAMPLE SIZE ON THE POSTERIOR RISK 

Suppose we let the sample size vary when the sampling distribution is  , 25N  and θ 

is  10,15N .  Then, we set θ = μ for the mean of the sampling distribution.  We generate 

simple random samples from  10, 25N when a = 1. We generate random samples from 

 10,12.5N  when a = 2 for our purposive samples.  TABLE IV gives the results using the 

squared error loss function. 

 



TABLE IV: Effect of sample size (a) on the posterior risk using squared 
error loss function when 2 25, 10,    and 2 15.   

 
 
 

 

 

 

 

(a)  

Based on three samples. 
(b)  Using equation (2.1). 
 

 

 

We find that the average loss of the sample mean as an estimator of  θ decreased and 

approached zero as the sample size became very large.  The range of the expected loss of the 

sample mean as the estimator of θ is seen to decrease as the sample size increases. These 

observations hold for both simple random sampling and purposive sampling. Also, the risk 

levels under purposive sampling are consistently lower than those under simple random 

sampling as the sample size increases. 

 
 

4. CONCLUSIONS 
 

 

Purposive sampling as described in this study is an optimal Bayesian sampling plan.  

The posterior risk is shown to be independent of the observed sample values, a sufficient 

condition for optimality of any nonrandomized single-phase sampling plan without 

Posterior Risk (b) 
1a   2a   

Sample 
Size 

 Min Max Mean Min Max Mean 
5 3.7651 4.4123 3.9815 2.1430 2.2110 2.1860 
10 2.1430 2.1608 2.1493 1.1541 1.1593 1.1565 
15 1.5008 1.5169 1.5068 0.7897 0.7960 0.7920 
30 0.7904 0.7916 0.7909 0.4054 0.4056 0.4055 
50 0.4839 0.4845 0.4842 0.2459 0.2461 0.2460 
75 0.3261 0.3264 0.3263 0.1648 0.1648 0.1648 

100 0.2459 0.2459 0.2459 0.1240 0.1240 0.1240 
150 0.1648 0.1648 0.1648 0.0829 0.0829 0.0829 
200 0.1240 0.1240 0.1240 0.0622 0.0622 0.0622 



replacement. Simulation of the posterior risk indicates that the performance of the sample 

mean as an estimator of the population mean under purposive sampling improves as the 

population becomes more compact using the squared error loss function.  The average losses 

of the sample mean are lower under purposive sampling regardless of the prior belief on the 

variability of the population mean. The risk level under purposive sampling is reduced as the 

sample size is increased.   
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