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Abstract: A spatiotemporal multilevel model is postulated and estimated using the forward
search algorithm and maximum likelihood estimation imbedded into the backfitting
algorithm. Forward search algorithm ensures robustness of the estimates by filtering the
effect of temporary structural changes in the estimation of the group-level covariate
parameters, the individual-level covariate and the spatial parameters. Backfitting algorithm
provides computational efficiency of the estimation procedure assuming an additive model.
Simulation studies show that estimates are robust even in the presence of structural changes
induced for example by temporary epidemic outbreak. The model also produced robust
estimates even for small sample sizes and short time series common in epidemiological
settings.

Keywords: multilevel model, spatiotemporal model, temporary structural change, forward
search algorithm

1. Introduction

Consider epidemics such as the spread of A(HIN1) which infects clusters of individuals.
Outbreaks can lead to structural change in the behavior of the model since this creates severe
fluctuations in the prevalence of the disease in affected areas. Infectious diseases are
influenced by complex interactions among disease agents, socio-economic conditions,
environmental and ecological factors, wildlife and humans. As an illustration, prevalence of a
disease in the presence of outbreaks is characterized by spatiotemporal clustering of infection
among the susceptible population. Prevalence rates in neighboring areas are expected to be
correlated as they are similar in geographical distribution of population at risk and other
scales defining the spread of the infection. The occurrence of the disease on the same area
may be due to spatial externalities indexed by geographic, demographic, health and social

conditions. Neighboring areas are homogeneous in terms of environmental risks, quality of



sanitation, population density and other socioeconomic factors. As a result of the dynamic
nature of the outbreaks where the population at risk is constantly changing and the control
treatments vary, it is imperative for these changes in spatial and temporal components of
infection risk that occur over time to be included in the analysis. Hence, spatiotemporal
multilevel models addressing the interactions between disease and the environment that is
continuously evolving over time could be a useful tool in understanding and predicting the

spread and risk associated with the disease.

Estimation of prevalence rates of highly contagious diseases can be affected by factors based
on physical and geographical conditions (covariates), information on the spread mechanism
within the area with homogeneous conditions (spatial parameter) and a temporal measure
that captures the temporary structural changes, as in the case of an epidemic outbreak at a
specific time. A space-time interaction is necessary in understanding and characterizing
prevalence of a disease as it is generally dictated by conditions summarized through
covariates. Also, group-level effect should be included since features of groups are often
driven by the individuals they compose of, meaning that these individuals are influenced, in
turn, by the additive feature of the group to which they belong. Furthermore, the inclusion of
structural change is necessary as there realistically exist in the dynamics of disease spread,
that temporarily inflicts the population density affecting the disease rates at the susceptible

setting.

We postulate a model that takes into account the group-level effect, individual-level effect,
temporal and spatial dependencies in a multilevel analysis typically exhibited by disease

prevalence rates that are jointly determined by physical and geographic conditions and group-



level factors (covariates). This paper develops an epidemic multilevel model that is flexible for
both infected and non-infected cases. We propose an estimation procedure that is robust (to
the presence of temporary structural change) and is computationally viable. The estimation
procedure is iterative and combines the forward search algorithm and estimation of a mixed
model in the backfitting framework. The backfitting algorithm simplifies the estimation
procedure that facilitates convergence. Atkinson and Riani (2007) emphasized robustness of
the forward search algorithm in a wide variety of statistical models. Buja et. al. (1989) proved
consistency and convergence of the backfitting algorithm in a relatively general class of

smoothers in an additive model.

Spatiotemporal multilevel modeling in epidemiology aims to understand the important
determinants of epidemic development in order to develop sustainable schemes for strategic
and tactical management of diseases. Developing countries usually experience some
challenges in public health administration that requires space and time specific mitigation
strategies, e.g., dengue and leptospirosis that becomes prevalent in depressed areas during

heavy rainfall.

2. Multilevel Spatiotemporal Model

The prevalence of a disease in the presence of outbreaks is characterized by spatiotemporal
clustering of infection among the susceptible population. Epidemic cases may take place in
adjacent locations or areas that are close to each other. Prevalence rates in neighboring areas
are expected to be in near approximations as they are similar in geographical distribution of

population at risk and other factors that characterizes dynamics in infection. Presence of



diseases in the same area may be due to their common geographic, demographic, health, and
social conditions. It is therefore logical to infer that these areas are homogeneous relative to
environmental risks, quality of sanitation, population density and other socioeconomic
factors. As a result of the dynamic nature of the outbreaks where the population at risk is
constantly changing and the control treatments vary, it is imperative for these changes in
spatial and temporal components of infection risk that occur over time to be included in the
analysis. Hence, spatiotemporal multilevel models addressing the interactions between the
disease and the environment that is continuously evolving over time could be a useful tool in

understanding and predicting the spread and the risk associated with the disease.

A space-time interaction is necessary in understanding and characterizing the prevalence of
a disease as it is generally dictated by conditions indexed by covariates. Also, group-level
effect should be included since features of groups are often driven by the individuals they
comprise, which means that these individuals are influenced, in turn, by the “emerged”
additive feature of the group to which they belong. Furthermore, the inclusion of structural
change is necessary as there realistically exist in the dynamics of disease spread, that
temporarily inflicts the population density affecting the disease rates at the susceptible

setting.

Given observations for N units at T time points, prevalence rate (V;;) is postulated as a
function of dependencies in space, time, and space-time interactions. In the presence of an
outbreak, we account for the group-level factors (community demographics and spatial
features of the population) that contribute to disease outcomes:
_at"
Yie = By X +7aWye + 42 +U; + 4y & + & (1)
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where f, =,8[(i){i6Nd} + B*I(i){iENd}
74 =V1(i){ieNd} + V*I(i){iGENd}

bq = d)l(i){ieN‘i} + ¢*I(i){ieNd}
&ijt = PEije-1 t ar, ar~ N(0, 0%)

Ao = 0, if j*" unit (higher level) does exhibit any outbreak episode

The parameters B,y and ¢ are the original parameters while %, y*and ¢* are the
temporary values due to the occurrence of an epidemic (structural change). Change in values
of the parameters signifies the effect of the disease on the covariates and spatial
dependencies of the model, respectively. The error component is investigated for temporal
dependence. We assume that error is an autoregressive process of order 1. Moreover, it is
assumed that clusters in NY are identified a priori and that prior knowledge is available on
which clusters have been affected by the outbreak. Membership of N? to the clusters is
known, and that progression of epidemics in each cluster is homogeneous within but possibly

heterogeneous across clusters.

Estimation Procedure

We propose a modified, iterative estimation procedure for spatiotemporal multilevel models
by infusing the forward search algorithm and a mixed model (maximum likelihood estimation)
into the backfitting framework. We also evaluate robustness of the method to presence of

temporary structural change through a simulation study.



The general idea of the estimation procedure is to alternately estimate the parameters
corresponding to covariates S for the individual-level, the parameters corresponding to the
spatial parameter y and the parameters corresponding to the covariates ¢ for the group-
level through the imbedded forward search algorithm and mixed model estimation into the
backfitting algorithm. The method can mitigate contamination that the ordinary least squares
may possibly encounter during outbreaks, see for example Atkinson (2009) for further details
on robustness of the forward search algorithm. The temporary structural change (outbreak)
effect 1, and 1, are estimated using the maximum likelihood on the residuals after the effect
of Xijt, Wije, Zjr and uj; are removed from Y . Parameter p is then estimated by
recomputing the residuals after the effect of the outbreak dynamics is removed from the

previous residuals.

Our goal is to construct robust estimates of model parameters in the presence of
contamination due to the temporary structural change caused by the outbreaks
(interventions). Suppose that the time of the occurrence of an intervention like an outbreak

is known a priori.

Vanishing structural change (temporary) characterized through outbreaks is represented by
an exponential infectious time g(t*; 1) = Ayexp{—A,t*}. The mean value of the distribution
is assumed to be equal to the removal rate of the disease in the epidemic model. Given the
closed-form nature of the epidemic dynamic and its known likelihood function, the maximum
likelihood method is optimal. Incorporation of epidemics may result to alterations on the

epidemic-free values of 5,y and ¢, as reflected in Model (1).



An estimation procedure consisting of forward search and mixed model estimation imbedded

in backfitting algorithm is described below:

Step 1: The parameters are estimated through forward search algorithm and mixed model

estimation embedded into the backfitting algorithm.

Step 1a: Mixed Model Estimation

i. Fit the model Y = B Xy + y Wy, +v,

it Vi using all N observations. Compute the residualse

ijt *

The residuals contain information on other parameters.

ii. Estimate ¢ and the random components U j: using the residuals in Step i in a multilevel

model.

iii. Given the estimates of ¢ and the random components U in Step ii, compute new residuals

and iterate from Step i using these new set of residuals in place of Yi.

The amount of bias is minimized as the iteration progresses. The iteration then stops when
the succeeding estimate values are not very far from the preceding estimate values, e.g., a

tolerance level €.

Step 1b: Forward Search Algorithm

Given the final estimates of the parameters of the mixed model, compute the residuals.

i. Choose n observations corresponding to the n smallest residuals.



i. Fit the model Yt = 8 X;, +yW, +v;, using all n observations. Compute the

ijt T Vijt

residuals ey, .

iii. Estimate ¢ and the random components Uj: using the residuals in Step ii in a

multilevel model.

iv. Given the estimates of ¢ and the random components Ujtin Step iii, compute new

residuals and iterate from Step ii using these new set of residuals in place of

Yit .
Step 2: The parameters of the temporary structural change will be estimated through
maximum likelihood estimation since there is a closed-form structure of the disease
dynamics. This is implemented only on neighborhoods that are infected by the disease. It is

therefore imperative that prior knowledge of the infected areas is available. A new set of

A N N

+¢Z,, B,y and¢ are the

N n

residuals is computed e, =Y;, —Yiitwhere Y = 8 X, +y W,

averaged estimates across all time points. For infected areas, we note that these residuals &

will contain information on the temporary structural change and temporal component

initially ignored in the Forward Search Algorithm in Step 2. The Maximum Likelihood
estimates of A;and A, are generated only on infected neigborhood. These estimates are also

averaged using harmonic mean of the raw estimates. The final residuals may then be

n A

computed as ¢, =Y, —Yit where Yit =B Xy +yW, +9Z, + 4, exp{— ilt} for areas with

outbreaks. Otherwise, the final residuals are defined by e, =Y; —Yit where

n A

Yie = B Xy +y Wi,

+¢th.



Step 3: Another regression is performed on the residuals with its lagged values to estimate

temporal parameter p. For each ij, estimate p using conditional least squares (CLS) in an AR(1)

n N

model of ejt, i.e., ejt = pej1 + ait, say p;. Compute the average of p; for all i, j,. i.e.

A J nj A

p:zzpij .

j=1 i1

These steps are implemented iteratively until parameters do not vary significantly.

3. Simulation Study

The proposed model with the estimation procedure is evaluated using simulated data from
the balanced (N = T) and unbalanced (T < N) scenarios adopted from (Bastero and Barrios,
2011). The balanced case is considered since in panel data analysis, this is the setting where
most optimal characteristics of existing methods were observed. However, typical panels
involve a short span of time for several individuals, i.e., unbalanced case. This means that
asymptotic arguments are heavily reliant on the number of individuals approaching infinity
(Hsiao, 1986). Also, in reality, it is difficult to compile long time-series and the chance of

attrition is heightened.

The simulation study aims to exhibit an abstraction of the epidemic behavior and disease
dynamics. Thus, investigation of robustness of parameter estimates is done on data sets that
are nested on the following features: data with two clusters vs. five clusters, all clusters are
contaminated vs. only one cluster is contaminated, infection over short vs. long periods of
time, changes in parameters of the covariates vs. no apparent change in parameters. The

number of clusters, 2 or 5, represents population divided into smaller number of susceptible
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groups or otherwise. Consider a fixed number of N units, dividing the population into 2 and 5
clusters will look at setting where each neighborhood is comprised of large and small number
of spatial units, respectively. The scope of the contamination over neighborhoods will be
manifested by case where only a single cluster is affected and the case where all neighbors
are affected by the epidemic. The case where a single cluster is infected may be viewed as
the endemic case, where the infection is maintained in the population. The scenario where
all clusters are suffering from the outbreak is parallel to those national or international
concerns due to its high-risk transmissions. Short and long contamination periods were
considered, some epidemics die down into the susceptible class faster than other epidemics.
Long contamination periods are defined by 50% of the time points affected while short
contaminations are defined whenever the disease persist only during 25% of the time points.
The introduction of the temporary structural change affects the covariate and spatial
parameter, manifested by the change of value in the original parameter which may in fact
serve as the indicator for disease severity. It is expected that the larger the difference of 3, ¥

and ¢ is to the actual value, the more severe the disease is, i.e., causing more deviant effects

on these parameters. The simulation study will also look at the possibility that the epidemic
will not affect any covariate and spatial features of the population. As a consequence, the
case wherein no change is made to the parameters will also be included.

Furthermore, we explored the behavior of the estimates for small and large sample sizes. The
scenarios considered for balanced and unbalanced data sets are shown in Table 1 and Table

2, respectively.
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Table 1. Simulated Data Scenarios on Balanced Data Sets

Two Balanced Data Sets
(N=T=20)or Small ; (N=T = 50) or Large

Two Clusters

Five Clusters

One-Cluster
Contamination

All-Cluster
Contamination

One-Cluster
Contamination

All-Cluster
Contamination

Short Time | Long Time | Short Time | Long Time | Short Time| Long Time [ Short Time | Long Time
Interval Interval Interval Interval Interval Interval Interval Interval
Ne | we | N [we | ne | we [ ne [we | ne [we | ne [we | ne [ we | ne | we

where NC = no change in the original parameters

WC = with change in parameters
For the common data set where T < N, cases with T = 10, 20 and N = 25/26, 30, 50 will be
investigated. These six combinations generated from the values of T and N for the common
data set feature the small and large sample sizes.

Table 2. Simulated Data Scenarios on Unbalanced Data Sets

Six Common Data Sets
(T=10, N=25/26); (T=10, N=30); (T =10, N=50)
(T=20, N=25/26); (T=20, N=30); (T=20, N =50)

Two Clusters Five Clusters

All-Cluster
Contamination

One-Cluster
Contamination

All-Cluster
Contamination

One-Cluster
Contamination

Short Time | Long Time | Short Time | Long Time | Short Time | Long Time | Short Time | Long Time
Interval Interval Interval Interval Interval Interval Interval Interval
Nnc [we | Nne [we [ Nne | we [ ne [we | ne [we | Nne [we | Ne [ we | Ne | we

where NC = no change in the original parameters

WC = with change in parameters
The response variable Y was computed from Equation (1). Z was sampled from Normal
population (u=5,000 and 62=100) while X was sampled from Normal population (u=10,000
and 02=1000). Furthermore, the spatial units were divided into clusters/neighborhoods and
spatial dependencies are introduced. Samples are generated in the neighborhood system
variable W from Poisson distribution where each neighborhood would have mean y, = k *

12



100, k = 1,2 for the 2-cluster case and u, = k * 100, k =1,2,...5 for the 5-cluster case. On the

other hand, the error term was simulated from the AR(1), & = p&;ji-1 + a¢ ar~ N(0,1)
with p = 0.5 and the random component U; was simulated from the standard normal

population. The values of the parameters were set at § = 0.52, y = 14.6, ¢ = 0.61,4, =
4,800,000, A; = 2.5. These values were chosen so that each component in the model would
have significant contribution in the value of each response variable. The temporary structural
change was manifested through the change in parametersof 5, y and ¢ to 8* = 0.572, y* =
16.06, ¢ * = 0.671, represent a 10% difference in the model parameter values. Higher
disease severity rates were also considered, resulting to larger differences in the original and
temporary values of the covariate and spatial parameters. Specifically, 20%, 30% and 40%
difference were considered in the temporary values of 8, ¥ and ¢ to B* = 0.624, y* =
17.52, ¢ * =0.732 and p*=0.676, y* =1898, ¢*=0.793 and p* =0.728, y" =
20.44, ¢ * = 0.854, respectively. Spatial variables and covariates were generated from the
exponential function that was used to define outbreak dynamics (dies off over time).
Response variable values (prevalence rate) dramatically increased at the beginning of the

outbreak and returned to “normal” values as the outbreak dissipates.

4, Results and Discussion

Data generated from various simulation scenarios presented in the previous section are used
in evaluating robustness of the estimated spatiotemporal multilevel model to presence of
structural change. The performance of the hybrid algorithm was assessed by computing the
absolute percent difference between estimates and simulated values of the parameters. The

hybrid algorithm is benchmarked on the MLE estimates using the same simulated data.
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Details of other scenarios for unbalanced data are no longer presented since the hybrid

method yield similar results for various cases of unbalancedness.

4.1 No Structural Change

We also investigate the performance of the hybrid method in the absence of structural
change (outbreak-free). In Table 3, balanced and unbalanced data sets were generated for
small and large data sets, each divided into 2 or 5 clusters. Actual values of the parameters

are specified similar to that in Section 3.

In both balanced and unbalanced data, the hybrid method provides desirable estimates for
the parameters of group-level and individual-level covariates as well as for the spatial
parameters. Parameter estimates are very close to the true values of the parameters, except
for the temporal parameters that are estimated last in the backfitting algorithm. As Santos
and Barrios (2012) noted, backfitting estimates poorly those parameters that are estimated
towards the end in the iteration. See Table 3 for further details.

Table 3. No Structural Change

Balanced Data Set (T = N)
% Difference Between Estimates and True Parameters
B Y [ p
Scenarios Hybrid | MLE | Hybrid | MLE | Hybrid | MLE | Hybrid
Small Data Set | 2 clusters | 0.111 | 0.000 | 0.009 | 0.005 | 0.197 | 0.000 | 81.208
(T=20, N=20) 5 clusters | 0.191 | 0.019 | 0.014 | 0.000 | 0.328 | 0.033 | 71.674
Large Data Set | 2 clusters | 0.425 | 0.000 | 0.171 | 0.030 | 0.820 | 0.016 | 73.425
(T=50, N=50) 5 clusters | 0.222 | 0.000 | 0.001 | 0.008 | 0.377 | 0.000 | 94.926
Unbalanced Data Set (T < N)
% Difference Between Estimates and True Parameters
B Y [ p
Scenarios Hybrid | MLE | Hybrid | MLE | Hybrid | MLE | Hybrid
(T=10, 2 clusters | 0.378 | 0.019 | 0.103 | 0.003 | 0.705 | 0.016 | 75.786
N = 25/26) 5 clusters | 0.317 | 0.019 | 0.010 | 0.000 | 0.557 | 0.066 | 88.211
(T= 10, 2 clusters | 0.127 | 0.019 | 0.056 | 0.024 | 0.262 | 0.033 | 94.746
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N = 30) 5 clusters | 0.421 | 0.019 | 0.017 | 0.005 | 0.738 | 0.016 | 96.403
(T=10, 2 clusters | 0.179 | 0.000 | 0.089 | 0.050 | 0.361 | 0.033 | 87.195
N =50) 5 clusters | 0.236 | 0.000 | 0.007 | 0.010 | 0.410 | 0.016 | 86.966
(T= 20, 2 clusters | 0.290 | 0.000 | 0.118 | 0.019 | 0.574 | 0.016 | 74.081
N = 25/26) 5 clusters | 0.400 | 0.000 | 0.028 | 0.003 | 0.721 | 0.016 | 93.907
(T= 20, 2 clusters | 0.216 | 0.000 | 0.041 | 0.015 | 0.410 | 0.033 | 85.349
N = 30) 5 clusters | 0.083 | 0.000 | 0.011 | 0.010 | 0.164 | 0.016 | 92.924
(T= 20, 2 clusters | 0.449 | 0.000 | 0.132 | 0.025 | 0.836 | 0.000 | 76.116
N =50) 5 clusters | 0.236 | 0.000 | 0.003 | 0.006 | 0.410 | 0.000 | 98.657

Absolute percent difference between estimates and their true parameter values are
comparable for the hybrid method and the MLE. Regardless of the sample size, whether or
not the panel is balanced, the hybrid method and MLE are comparable, both methods yield

estimates that are near the true parameter values.

4.2 Presence of Structural Change

Structural change is simulated with the inclusion of outbreak parameters (4, and 4;) and
included in hybrid estimation. This represents the temporary structural change that causes
atypical observations in the dataset. The dynamics of epidemics have been simulated so that
it represents cases where the outbreak poses a threat over a long period of time and those
where outbreaks are easily controlled and the vulnerable population quickly recovers from
the threat. Moreover, the outbreak can affect only a contained locale while it can also infest
the entire population. Two case considered inducing the outbreak in only one cluster or in all
clusters. With structural change, spatial parameters, group-level and individual-level
covariates are affected. Several contamination levels were considered, namely 10%, 20%,
30% and 40% to illustrate the severity of the effect of the epidemic in the model. As the
epidemic becomes quite severe, changes in the parameters becomes more remarkable.
Efficiency of the procedure in generating robust estimators was also assessed relative to the

clustering of the population into small or large number of neighborhoods.
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4.2.1 Contamination in One Cluster

Contamination in one cluster represents the scenario that outbreak is endemic, i.e.,
contamination is confined in a specific location. Hybrid estimation method was used on both
balanced and unbalanced data sets where onset of the outbreaks was infused in only one
cluster. Generally, hybrid method provides robust estimates for both balanced and
unbalanced data sets in one-cluster contamination, particularly when no structural change is
present or short contamination periods are involved. Robust estimates are also achieved
whenever the population is divided into large number of clusters. Moreover, in balanced
cases, estimates close to the actual values are obtained even with minimal number of spatial
units. For unbalanced data, increasing sample size produces comparable results, supporting
further the efficiency of the method in small samples. This is especially useful in epidemiology
where public health costs are ideally minimized with fewer individuals monitored and for
shorter follow-up periods to avoid higher attrition rates. The system of taking subsets of
parameters for simultaneous estimation minimizes the burden in convergence of most
estimation methods. This is particularly true for the maximum likelihood estimation,
divergence is often realized whenever large number of parameters are estimated. A
comparison is made between the estimates of the hybrid estimation method and the
maximum likelihood estimation. See Tables 4 and 5 for details of cases with one
contaminated cluster in balanced data.

Table 4. Balanced, Small Data Set (T = 20, N = 20), Contamination in One Cluster

Two Clusters
% Difference Between Estimates and True Parameters
B 4 ) Ao A 4
Hybrid | MLE | Hybrid | MLE | Hybrid | MLE | Hybrid | Hybrid | Hybrid
Case 1: contamination in 1 cluster, short period, no change in parameters
| | 0.265 | 290.6 | 0.107 | 1682.3 | 0.508 | 281.2 | 0.002 | 0.001 | 20.7
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Case 2: contamination in 1 cluster, short period, with change in parameters

10
% | 0.286 | 288.9 | 0.177 | 1706.7 | 0.541 | 295.8 | 3.147 | 1.392 | 19.2
20
% | 0.221 | 288.3 | 0.093 | 1731.0 | 0.443 | 308.5 | 6.361 | 2.855 | 65.9
30
% | 0.176 | 287.2 | 0.110 | 1755.2 | 0.361 | 321.9 | 9.247 | 4221 | 66.4
40
% | 0.221 | 286.1 | 0.094 | 1779.3 | 0.443 | 3354 11.9 | 5,550 | 65.6
Case 3: contamination in 1 cluster, long period, no change in parameters
| | 0.264 | 290.6 | 0.112 | 1682.3 | 0.525 | 281.2 | 0.002 | 0.001 | 20.8
Case 4: contamination in 1 cluster, long period, with change in parameters
10 19.89
% | 1.724 | 270.9 1 1627.1 | 12,21 | 289.8 | 2.530 | 1.107 | 42.9
20 35.40
% | 2.007 | 12.6 3 3.821 19.8 850.3 | 5.079 | 2.256 | 42.3
30 53.07
% | 2.849 | 267.1 2 1714.2 | 29.34 | 337.29 | 7.430 | 3.344 | 42.09
40 70.70
% | 3.781 | 265.03 7 1757.74 | 39.08 | 361.18 | 9.673 | 4.410 | 41.97
Five Clusters
% Difference Between Estimates and True Parameters
B 14 Y Ao ) p
Hybrid | MLE | Hybrid MLE Hybrid MLE Hybrid | Hybrid | Hybrid
Case 1. contamination in 1 cluster, short period, no change in parameters
| | 0.280 | 79.80 | 0.062 | 159.903 | 0.295 | 251.88 | 0.017 | 0.007 | 9.224
Case 2: contamination in 1 cluster, short period, with change in parameters
10% | 0.280 | 84.71 | 0.062 | 161.988 | 0.295 | 248.57 | 3.417 | 1.505 | 26.67
20% | 0.280 | 89.69 | 0.062 | 164.058 | 0.295 | 245.13 | 6.625 | 2.969 | 26.58
30% | 0.193 | 94.71 | 0.014 | 166.123 | 0.328 | 241.59 | 9.638 | 4.394 | 30.39
40% | 0.171 | 75.46 | 0.011 | 22.668 | 0.295 | 77.738 | 12.45 | 5.774 | 30.70
Case 3: contamination in 1 cluster, long period, no change in parameters
| | 0.248 | 79.79 | 0.066 | 159.904 | 0.230 | 251.90 | 0.017 | 0.007 | 12.15
Case 4: contamination in 1 cluster, long period, with change in parameters
12.55
10% | 4.304 | 75.71 | 2.187 | 155.467 7 247.77 | 3.226 | 1.416 | 9.412
25.49
20% | 8.939 | 11.44 | 4.306 | 4.387 2 792.13 | 6.268 | 2.798 | 9.464
38.31
30% | 13.61 | 76.59 | 6.348 | 164.327 1 267.13 | 9.137 | 4.145 | 9.437
51.03
40% | 18.13 | 52.86 | 8.464 | 31.828 3 18.164 | 11.82 | 5.450 | 9.428

Table 5. Balanced, Large Data Set (T = 50, N = 50), Contamination in One Cluster

Two Clusters

% Difference Between Estimates and True Parameters

B

14

)

Ao

A4

Hybrid |

MLE

Hybrid

MLE

Hybrid

MLE

Hybrid

Hybrid

Hybrid

Case 1: contamination in 1 cluster, short period, no change in parameters

17




| | 0.205 | 12.33 | 0.164 | 767.60 | 0.443 | 384.62 | 0.002 | 0.001 | 6.000
Case 2: contamination in 1 cluster, short period, with change in parameters

]62 0.205 12.8 0.258 752.8 0492 | 9 3 3.298 | 1.452 | 46.45
202 0.209 26.6 0.188 778.6 0.459 | 8 e 6.394 | 2.864 | 46.43
?’2 0.584 34.2 0.312 805.4 1.197 |1 - 9.298 | 4.234 | 50.37
?’2 0.207 16.8 0.260 822.1 0.492 | 3 e 12.03 | 5.566 | 46.18

Case 3: contamination in 1 cluster, long period, no change in parameters
| | 0.226 | 12.33 | 0.163 | 767.60 | 0.475 | 384.62 | 0.001 | 0.001 | 5.772
Case 4: contamination in 1 cluster, long period, with change in parameters

o | 1743 | 13 |176s8| 73890 | 1105 |8 o | 2508 | 1438 | 47.39
w3277 | 29 | 3400 | 7828 | y105 |4 | 5072 | 2258 | 4751
w5105 | 370 | sas2 | 8286 | 334 |1 | 7424 | 3342 | 4738
% lo373| 22 | gosr | 47 | 431 o | 0650 | 4405 | 47.38

Five Clusters

% Difference Between Estimates and True Parameters

B 14 Y Ao ) p
Hybrid | MLE | Hybrid MLE Hybrid MLE Hybrid | Hybrid | Hybrid
Case 1: contamination in 1 cluster, short period, no change in parameters

\ | 0250 | 181 | 0026 | 636 | 0.361 | 126.4 | 0.003 | 0.001 | 5.749

Case 2: contamination in 1 cluster, short period, with change in parameters
10% | 0.250 16.8 | 0.026 62.9 0.361 126.8 | 3.343 | 1.473 | 13.69
20% | 0.249 16.2 | 0.002 65.1 0.426 133.0 | 6.477 | 2.904 | 14.04
30% | 0.250 15.7 | 0.026 67.3 0.361 139.3 | 9.408 | 4.289 | 13.56
40% | 0.246 15.1 | 0.003 69.6 0.426 145.8 | 12.17 | 5.639 | 13.90

Case 3: contamination in 1 cluster, long period, no change in parameters

| | 0279 [ 17.7 [ 0024| 621 [ 0410 | 1234 [ 0.002 | 0.001 | 5.901
Case 4: contamination in 1 cluster, long period, with change in parameters
10% | 0.401 159 | 1.830 60.7 3.754 1229 | 3.106 | 1.367 | 17.92
20% | 0.538 15.6 | 3.607 64.7 7.836 133.1 | 6.030 | 2.698 | 19.29

12.06

30% 0.673 | 15.3 | 5.442 68.7 6 143.4 | 8.778 | 3.989 | 19.74
16.13

40% 0.817 | 149 | 7.220 72.8 1 153.8 | 11.38 | 5.250 | 19.92

Effect of Number of Clusters (Balanced Data)

For balanced data, estimates are very close to true values of 8, y and ¢ except when

contamination is prolonged with changes in the parameter values. In small balanced data,
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when contamination is prolonged with associated changes in parameter values, spatial
parameter y is the most affected in two cluster case while in the five-cluster case, the group-
level covariate ¢ is the most affected. More prominent structural change drives parameters
estimates away from their true values, e.g., spatial parameter y in two-cluster case, and
group-level covariate parameter ¢ in the five cluster cases. Similar is true even in large
balanced dataset for the two-cluster case. However, in five cluster case, the hybrid procedure

provides robust estimates for all parameters.

Outbreak parameters are robustly estimated regardless of length of time series, sample size,
and severity of structural change. The temporal parameter p, remains to be poorly estimated
in two-cluster case, this is especially true whenever no change in 8, ¥y and ¢ are considered

in the data generating process.

Effect of Number of Clusters (Unbalanced Data)

In unbalanced data with two clusters, there is difficulty in estimating the spatial and the
group-level covariate parameters whenever structural changes occur over a long period. As
the severity of structural change increases, these parameter deviate away from their true
values. Outbreak parameters are very well estimated even in unbalanced data. Temporal
parameter is still poorly estimated when there are prolonged contaminations with or without
change in parameters. Hybrid method is unable to properly estimate the temporal parameter
as the disease become persistent. For five-cluster with unbalanced data, hybrid method
provide robust estimates for the spatial, individual- and group-level covariates and temporal

parameters. This illustrates the advantage of hybrid method in cases when larger numbers of
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clusters are involved. Outbreak mitigation programs are made more efficient when
population is divided into several geographical clusters, resulting into more efficient

identification and prevention of diseases. See Table 6 for further details.

Estimates in the five-cluster scenario are comparable with those in two-cluster scenarios. In
unbalanced data, number of clusters have minimal effect on the characteristics of the hybrid
estimates.

Table 6. Unbalanced Data Set (T = 10, N = 50), Contamination in One Cluster

Two Clusters

% Difference Between Estimates and True Parameters

B Y ) Ao A p
Hybrid | MLE | Hybrid | MLE | Hybrid | MLE | Hybrid | Hybrid | Hybrid
Case 1. contamination in 1 cluster, short period, no change in parameters

| | 0264 | 535 | 0.373 | 3326.2 | 0.656 | 1666.6 | 0.009 | 0.004 | 35.02

Case 2: contamination in 1 cluster, short period, with change in parameters
102 0.219 52.3 0.185 33479 | 0475 | 1673.4 | 3.224 | 1.422 | 0.931
20
%
30
%
40
%

Case 3: contamination in 1 cluster, long period, no change in parameters

| | 0204 | 60.2 | 1.936 | 3742.1 | 1.279 | 1875.0 | 0.077 | 0.033
Case 4: contamination in 1 cluster, long period, with change in parameters
10
%
20
%
30
%
40
%

0.264 | 109.3 | 0.373 | 33859 | 0.656 | 1793.8 | 6.235 | 2.796 | 1.041

0.274 | 138.1 0.263 | 3428.0 | 0.851 | 1866.4 | 9.061 | 4.130 | 1.617

0.265 53.0 0.446 | 34245 | 0.957 | 1710.6 | 11.71 | 5.424 | 1.807

60.41

0.907 | 529 16.49 | 3366.0 9.21 | 1682.8 | 2.635 | 1.155 | 55.03

1.479 | 110.6 31.37 3420.3 | 17.11 | 18119 | 5.194 | 2.310 | 55.51

2.121 | 139.9 | 46.09 | 3478.8 | 25.05 | 1893.1 | 7.629 | 3.439 | 55.54

5.270 55.5 68.68 | 3491.6 | 41.16 | 1746.0 | 9.700 | 4.425 | 53.86

Five Clusters

% Difference Between Estimates and True Parameters
B Y ) Ao ) p
Hybrid MLE | Hybrid MLE Hybrid MLE Hybrid | Hybrid | Hybrid

Case 1: contamination in 1 cluster, short period, no change in parameters
| | 0.251 | 93.17 | 0.008 | 325.75 | 0.426 | 646.69 | 0.001 | 0.000 | 3.909

Case 2: contamination in 1 cluster, short period, with change in parameters
| 10% | 0.251 | 92.71 [ 0.008 | 328.45 | 0.426 | 654.05 | 3.271 | 1.443 | 1.197
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20% | 0.250 | 92.15 | 0.011 | 331.16 | 0.528 | 661.59 | 6.324 | 2.839 | 1.966
30% | 0.251 | 91.63 | 0.024 | 333.86 | 0.658 | 669.08 | 9.182 | 4.190 | 0.989
40% | 0.252 | 90.50 | 0.007 | 336.57 | 0.485 | 677.57 | 11.86 | 5.500 | 20.36

Case 3: contamination in 1 cluster, long period, no change in parameters
| | 0.270 | 82.37 | 0.134 | 289.69 | 0.115 | 575.93 | 0.020 | 0.008 | 10.89

Case 4: contamination in 1 cluster, long period, with change in parameters

10% | 0.545 | 77.81 | 1.502 | 293.89 | 2.803 | 593.69 | 3.142 | 1.383 | 25.11
20% | 0.818 | 73.15 | 2.869 | 298.10 | 5.721 | 611.59 | 6.110 | 2.734 | 26.86
30% | 1.092 | 68.54 | 4.237 | 302.31 | 8.623 | 629.46 | 8.902 | 4.048 | 27.32
40% | 1.366 | 63.38 | 5.604 | 306.52 | 11.54 | 648.20 | 11.53 | 5.326 | 27.44

Effect of Sample Size

Increasing the number of spatial units N and time points T in the unbalanced case ensures
robust performance of the hybrid estimation method. In two-cluster case, increasing the
number of spatial units for a fixed time point produces comparable results. Regardless of the
use of sample size (25/26) or large (30, 50) number of spatial time points, robust estimates
for the parameters £, v, ¢, 1, and A, are obtained in cases with short contamination period
or no structural changes in the parameters. Relatively large absolute differences between
estimated spatial parameter y and their true values for cases when severe structural changes
are present as caused by longer epidemic episodes. Fixing the number of spatial units and

increasing the number of time points results to better “forward searched” estimates.

In the five-cluster case, further improvement in estimates are realized with increasing sample
size, consistent with usual asymptotic optimality. However, it should be noted that hybrid
estimation method can produce generally robust estimated models even with small number

of observations.

MLE vs. Hybrid Estimation
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MLE is generally affected by structural change, specially, group-level and individual-level
covariates and spatial parameters for both balanced and unbalanced data sets. In the
presence of structural change, MLE is seriously influenced by atypical observations, causing
distortion of the estimates. Estimates from the hybrid method on the other hand, exhibit

robustness in the presence of temporary structural change.

4.2.2 Contamination in All Clusters

Hybrid estimation procedure is able to generate robust estimates for balanced and
unbalanced data sets. The forward search algorithm is able to abate effects on the estimates
of parameters [, ¥ and ¢ affected by structural change. Amidst variation caused by
temporary structural change, proposed method is able recover true group-level and

individual-level covariate and spatial parameters (3, y and ¢, respectively.

In the two-cluster case, comparable results (relative to MLE) are achieved for some
parameters. Minimal discrepancies in absolute percent differences are observed for both
small and large sample sizes. For five-cluster comparison of small and large samples, better
estimates are achieved for the small sample in cases with short contamination periods.
Minimal absolute percent differences are noted for cases with longer contamination periods.

See Tables 7 and 8 for further details.

Effect of Number of Clusters (Balanced Data)

The proposed method provides robust estimates for the group-level covariate and the

individual-level covariate, spatial and outbreak parameters of the balanced data set. When 3,
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y and ¢ are contaminated by 10%, 20%, 30% and 40% of its actual values, p is poorly

estimated for small and large balanced data set. See Tables 7 and 8 for details.

Table 7. Balanced, Small Data Set (T = 20, N = 20), Contamination in all Clusters

Two Clusters
% Difference Between Estimates and True Parameters
B 4 ? Ao A P
Hybrid | MLE | Hybrid | MLE | Hybrid | MLE | Hybrid | Hybrid | Hybrid
Case 1: contamination in all clusters, short period, no change in parameters

| | 0.099 | 0.923 | 0.044 | 8992 | 0.311 | 950.3 | 0.043 | 0.019 | 99.96
Case 2: contamination in all clusters, short period, with change in parameters

]‘;2 1.276 | 3.135 1.133 7.436 1492 | 1019.8 | 2.73 | 1.198 | 98.19
202 2453 | 7.115 | 2.310 2.184 2.656 | 897.2 5.35 | 2.385 | 98.09
?32 3.631 | 5.192 3.486 3.064 3.836 | 91.90 7.83 | 3.542 | 97.89
L:;?) 4.808 | 3.962 | 4.662 4.923 5.016 | 97.26 | 10.19 | 4.670 | 97.65

Case 3: contamination in all clusters, long period, no change in parameters

| | 0.150 | 0.923 | 0.027 | 8.991 | 0.230 | 950.29 | 0.045 | 0.019 | 99.28
Case 4: contamination in all clusters, long period, with change in parameters
102 4.24 5.981 4.079 4.578 4.39 1022.6 | 1.821 | 0.796 | 97.19
202 8.37 | 12577 | 8.197 3.821 8.49 850.28 | 3.618 | 1.597 | 96.91
?32 12.49 | 14.423 | 12.316 6.166 12.61 | 101.15 | 5.351 | 2.385 | 96.72
12 16.61 | 19.058 | 16.435 10.83 16.71 | 105.15 | 7.022 | 3.160 | 96.55

Five Clusters

% Difference Between Estimates and True Parameters
B Y ? Ao A p
Hybrid MLE | Hybrid MLE Hybrid MLE Hybrid | Hybrid | Hybrid
Case 1: contamination in all clusters, short period, no change in parameters
| | 0.249 | 0.365 | 0.025 | 7.569 | 0.000 | 878.21 | 0.047 | 0.020
Case 2: contamination in all clusters, short period, with change in parameters
10% | 1.425 | 2.865 | 1.201 | 5.069 1.180 | 880.70 | 3.273 | 1.442 | 96.21
20% | 2.602 | 6.231 | 2.378 | 1.238 2.361 | 832.84 | 6.377 | 2.860 | 96.41
30% | 3.745 | 9.173 | 3.552 | 1.703 3.607 | 835.77 | 9.285 | 4.236 | 96.49
40% | 4.895 | 10.36 | 4.725 | 2.430 4.819 | 888.21 | 12.02 | 5.573 | 96.51
Case 3: contamination in all clusters, long period, no change in parameters
| | 0.214 | 0.365 | 0.022 | 7.569 | 0.066 | 878.21 | 0.047 | 0.020 | 85.92
Case 4: contamination in all clusters, long period, with change in parameters
10% | 4.342 | 5.635 | 4.140 | 1.830 4.180 | 831.85 | 2.192 | 0.960 | 93.17
20% | 8.469 | 11.44 | 8.258 | 4.387 8.279 | 792.13 | 4.332 | 1.920 | 93.19

82.49
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30%

12.59

16.23

12.38

8.762

12.38

842.83

6.378

2.861

93.22

40%

16.69

21.52

16.49

14.052

16.51

847.72

8.339

3.783

93.23

Table 8. Balanced, Large Data Set (T = 50, N = 50), Contamination in All Clusters

Two Clusters

% Difference Between Estimates and True Parameters

B )4 ? Ao A p
Hybri
d MLE Hybrid MLE Hybrid MLE Hybrid | Hybrid | Hybrid
Case 1: contamination in all clusters, short period, no change in parameters
| | 0.215 | 0.038 | 0.068 | 1.914 | 0.246 | 30.721 | 0.016 | 0.007 | 17.31
Case 2: contamination in all clusters, short period, with change in parameters
10% | 2.348 | 2.481 | 2.196 0.490 1.869 | 32.426 | 2.460 | 1.078 | 95.00
20% | 4.494 | 4.038 | 4.326 1945 | 3.967 | 35.705 | 4.818 | 2.139 | 94.97
30% | 7.025 | 7.942 | 6.585 5.999 5.295 | 37.098 | 7.066 | 3.177 | 94.83
40% | 8.748 | 9.769 | 8.582 7.717 8.213 | 42.082 | 9.209 | 4.192 | 94.68
Case 3: contamination in all clusters, long period, no change in parameters
| 0.237 | 0.048 | 0.067 | 1.814 | 0.295 | 31.825 | 0.016 [ 0.007 | 16.14
Case 4. contamination in all clusters, long period, with change in parameters
10% | 4.929 | 5.038 | 4.750 3.005 | 4.377 | 35.836 | 1.671 | 0.729 | 89.96
20% | 9.620 | 9.135 | 9.433 6.912 9.033 | 42.705 | 3.302 | 1.454 | 90.07
30% | 14.71 | 16.192 | 14.25 | 14.309 | 12.92 | 44.607 | 4.881 | 2.168 | 90.03
40% | 19.01 | 20.577 | 18.80 | 18.531 | 18.34 | 52.902 | 6.408 | 2.871 | 89.94
Five Clusters
% Difference Between Estimates and True Parameters
B Y ) Ao A P
Hybrid | MLE | Hybrid MLE Hybrid MLE Hybrid | Hybrid | Hybrid
Case 1: contamination in all clusters, short period, no change in parameters
| | 0.252 | 1.096 | 0.004 | 3.616 | 0.279 | 376.52 | 0.013 | 0.006 | 8.488
Case 2: contamination in all clusters, short period, with change in parameters
10% | 2.384 | 1.673 | 2.133 | 0.668 1.836 | 351.84 | 2.941 | 1.294 | 96.90
20% | 4.517 | 4.731 | 4.261 | 2.442 3.967 | 346.56 | 5.723 | 2.559 | 97.02
30% | 6.649 | 5.154 | 6.389 | 2.673 6.082 | 380.87 | 8.348 | 3.790 | 97.09
40% | 8.782 | 8.962 | 8.517 | 6.564 8.197 | 367.87 | 10.83 | 4.989 | 97.11
Case 3: contamination in all clusters, long period, no change in parameters
| | 0283 | 1.038 | 0.425 | 3.436 | 0.328 | 357.70 | 0.013 | 0.006 | 7.498
Case 4: contamination in all clusters, long period, with change in parameters
10% | 4.978 | 3.712 | 4.689 1.315 4.328 | 362.62 | 2.002 | 0.877 | 91.72
20% | 9.673 | 9.269 | 9.370 | 7.037 8.984 | 343.15 | 3.937 | 1.742 | 91.76
30% | 14.37 | 13.15 | 14.05 | 10.790 13.64 | 370.07 | 5.796 | 2.592 | 91.77
40% | 19.06 | 17.96 | 18.73 | 15.564 | 18.30 | 376.87 | 7.584 | 3.427 | 91.77

Effect of Number of Clusters (Unbalanced)
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Increasing sample size for a fixed set of 10 time points in a two-cluster case does yield
improvements in parameter estimates. Extending the number of clusters to five, still no
improvement on the quality of parameter estimates for an increase in the number of
observations. With an increase from 30 to 50 spatial units, cases with short contamination
period, comparable estimates are achieved for the individual-level covariate 8, but the group-
level covariate and the spatial parameters are not estimated well. Furthermore, for prolonged
structural changes, better estimates are achieved for the individual-level covariate  and the
group-level covariate ¢p. However, the spatial parameter y yield more optimal estimates in

the case of 30 spatial units

In five-cluster scenario, increasing sample size with short contamination period is involved,
better estimates are obtained for all parameters except for the group-level covariate ¢. While
for the cases with prolonged contamination period, notable differences are detected for all
the parameter but still comparable except for the outbreak parameters which does not vary
over different sample sizes. Similar performance for both two-cluster and five-cluster are
observed. Number of clusters does not affect the robustness of the estimates computed for
all parameters.

Table 9. Unbalanced (T = 10, N = 50), Contamination in All Cluster

Two Clusters

% Difference Between Estimates and True Parameters

B Y ? Ao A4 p
Hybrid | MLE | Hybrid | MLE | Hybrid | MLE | Hybrid | Hybrid | Hybrid
Case 1: contamination in 1 cluster, short period, no change in parameters

| 0239 019 [ 0082 | 942 | 0459 | 148.84 | 0.001 | 0.001 | 24.27

Case 2: contamination in 1 cluster, short period, with change in parameters
102 0.239 | 1.65 0.082 8.96 0.459 | 158.98 | 3.052 | 1.345 | 13.75
20
%
30
%

0.359 | 3.08 0.187 7.53 0.367 | 160.41 | 5917 | 2.649 | 14.03

0.478 4.50 0.291 6.11 0.421 | 161.84 | 8.608 | 3.914 | 14.33
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40

% 0.456 | 10.19 ‘ 0.072 0.58 0.367 | 158.84 ‘ 11.14 ‘ 5.143 ‘ 14.64

Case 3: contamination in 1 cluster, long period, no change in parameters
|0.245 ] 019 | 0066 | 9.44 | 0656 | 149.2 | 0.107 | 0.046 | 85.73

Case 4: contamination in 1 cluster, long period, with change in parameters
102 3.276 | 4.50 2.962 6.12 3.197 | 162.97 | 2.148 | 0.940 | 91.19
202 5.982 | 6.92 5.784 5.47 6.328 | 191.69 | 4.305 | 1.906 | 91.16
%2 8.851 | 10.25 | 8.644 2.13 9.164 | 195.02 | 6.369 | 2.853 | 90.99
A('Jg 11.72 | 17.37 | 11.503 6.37 12.00 | 188.28 | 8.347 | 3.781 | 90.79

Five Clusters

% Difference Between Estimates and True Parameters

B 4 0 Ao A p
Hybrid | MLE | Hybrid MLE Hybrid MLE Hybrid | Hybrid | Hybrid
Case 1: contamination in 1 cluster, short period, no change in parameters
| | 0.252 | 523 [0.016 | 17.16 | 0.326 | 17885 | 0.011 | 0.001 | 1.464
Case 2: contamination in 1 cluster, short period, with change in parameters
10% | 0.262 1.48 | 0.045 13.41 0.426 | 1792.3 | 3.637 | 1.610 | 9.671
20% | 0.250 227 | 0.334 9.66 0.546 | 1796.0 | 6.999 | 3.159 | 9.605
30% | 0.251 2.21 | 0.206 11.18 0.485 | 2040.9 | 10.12 | 4.654 | 9.598
40% | 0.251 9.77 | 0.112 2.16 0.436 | 1803.5 | 13.02 | 6.096 | 9.645
Case 3: contamination in 1 cluster, long period, no change in parameters
| | 0.261 | 598 |0.010| 19.61 | 0.639 | 2044 | 0.101 | 0.044 | 84.15
Case 4: contamination in 1 cluster, long period, with change in parameters
10% | 3.121 0.94 | 2.867 9.69 3.492 | 1596.1 | 2.591 | 1.138 | 93.14
20% | 5.980 6.50 | 5.724 4.13 6.344 | 1601.7 | 5.139 | 2.290 | 93.37
30% | 8.841 | 654 | 8581 | 6.89 9.197 | 2046.1 | 7.556 | 3.414 | 93.43
40% | 11.70 | 14.79 | 11.44 2.85 12.05 | 1809.3 | 9.851 | 4.512 | 93.42

Effect of Sample Size

For unbalanced data with ten time points, forward searched estimates of the group-level and

individual-level covariates and spatial parameters are close to the true parameter values. The

use of MLE in the estimation of the outbreak parameters is also beneficial as it generates

optimal results, no large absolute percent differences are detected in three values of N,

namely 25/26, 30 and 50. Moreover, the temporal component p has been well-estimated in

the backfitting procedure in cases where short contamination periods are involved.
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In unbalanced case, forward searched estimates for 8,y, @, A, and 1; are comparable over
different number of time points. It can be noted that the estimates from the unbalanced data
sets with ten time points provides slightly better estimates than with twenty-time points. This
is especially true for the temporal component. For the unbalanced case with twenty-time
points, the temporal component p has been poorly estimated even in cases where short

contamination periods are involved.

MLE vs. Hybrid Method

For the balanced data sets, hybrid method is more desirable over MLE specially for the group-
level covariate parameter ¢. This is also true for the unbalanced data. This can be attributed
to the fact that the pure MLE procedure is affected by atypical observations that is distorting

the results of the estimates in the presence of structural change.

5. Conclusions

With motivation from epidemiology, a generalized multilevel model is postulated, this is
capable of summarizing spatial and temporal dependencies associated with the responses
like prevalence rate. We proposed an estimation procedure based on the backfitting
algorithm embedded with forward search algorithm and MLE of a mixed model to estimate
the group-level covariate effect, individual-level covariate effect and the spatial parameters.
A temporary structural change (e.g., those caused by disease outbreaks) is considered and

robustness of the estimates are evaluated through a simulation study.
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Simulation studies shows that the hybrid method and the MLE produced comparable
estimates under scenarios of no structural change. Advantages are observed in favor of the
hybrid estimation method in cases when there is a structural change. This advantage is
highlighted whenever the contamination effect is temporary in the group-level covariate,
individual-level covariate and spatial variables that are highly different from the true
parameter values. The forward search algorithm is able to produce robust estimates in the
hybrid method during episodes of temporary structural change. Furthermore, backfitting is
more computationally beneficial as it provides higher chances of convergence when several
parameters are involved. The postulated model is a robust abstraction of the epidemic
outbreak dynamics that can capture the general features not affected by erratic fluctuations

during an outbreak.
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