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Abstract: A spatiotemporal multilevel model is postulated and estimated using the forward 

search algorithm and maximum likelihood estimation imbedded into the backfitting 

algorithm. Forward search algorithm ensures robustness of the estimates by filtering the 

effect of temporary structural changes in the estimation of the group-level covariate 

parameters, the individual-level covariate and the spatial parameters. Backfitting algorithm 

provides computational efficiency of the estimation procedure assuming an additive model. 

Simulation studies show that estimates are robust even in the presence of structural changes 

induced for example by temporary epidemic outbreak. The model also produced robust 

estimates even for small sample sizes and short time series common in epidemiological 

settings.  

Keywords: multilevel model, spatiotemporal model, temporary structural change, forward 
search algorithm 
 
 
1. Introduction 

Consider epidemics such as the spread of A(H1N1) which infects clusters of individuals. 

Outbreaks can lead to structural change in the behavior of the model since this creates severe 

fluctuations in the prevalence of the disease in affected areas. Infectious diseases are 

influenced by complex interactions among disease agents, socio-economic conditions, 

environmental and ecological factors, wildlife and humans. As an illustration, prevalence of a 

disease in the presence of outbreaks is characterized by spatiotemporal clustering of infection 

among the susceptible population. Prevalence rates in neighboring areas are expected to be 

correlated as they are similar in geographical distribution of population at risk and other 

scales defining the spread of the infection. The occurrence of the disease on the same area 

may be due to spatial externalities indexed by geographic, demographic, health and social 

conditions. Neighboring areas are homogeneous in terms of environmental risks, quality of 
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sanitation, population density and other socioeconomic factors. As a result of the dynamic 

nature of the outbreaks where the population at risk is constantly changing and the control 

treatments vary, it is imperative for these changes in spatial and temporal components of 

infection risk that occur over time to be included in the analysis. Hence, spatiotemporal 

multilevel models addressing the interactions between disease and the environment that is 

continuously evolving over time could be a useful tool in understanding and predicting the 

spread and risk associated with the disease. 

 

Estimation of prevalence rates of highly contagious diseases can be affected by factors based 

on physical and geographical conditions (covariates), information on the spread mechanism 

within the area with homogeneous conditions (spatial parameter) and a temporal measure 

that captures the temporary structural changes, as in the case of an epidemic outbreak at a 

specific time. A space-time interaction is necessary in understanding and characterizing 

prevalence of a disease as it is generally dictated by conditions summarized through 

covariates. Also, group-level effect should be included since features of groups are often 

driven by the individuals they compose of, meaning that these individuals are influenced, in 

turn, by the additive feature of the group to which they belong. Furthermore, the inclusion of 

structural change is necessary as there realistically exist in the dynamics of disease spread, 

that temporarily inflicts the population density affecting the disease rates at the susceptible 

setting. 

 

We postulate a model that takes into account the group-level effect, individual-level effect, 

temporal and spatial dependencies in a multilevel analysis typically exhibited by disease 

prevalence rates that are jointly determined by physical and geographic conditions and group-
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level factors (covariates). This paper develops an epidemic multilevel model that is flexible for 

both infected and non-infected cases. We propose an estimation procedure that is robust (to 

the presence of temporary structural change) and is computationally viable. The estimation 

procedure is iterative and combines the forward search algorithm and estimation of a mixed 

model in the backfitting framework. The backfitting algorithm simplifies the estimation 

procedure that facilitates convergence. Atkinson and Riani (2007) emphasized robustness of 

the forward search algorithm in a wide variety of statistical models. Buja et. al. (1989) proved 

consistency and convergence of the backfitting algorithm in a relatively general class of 

smoothers in an additive model. 

 

Spatiotemporal multilevel modeling in epidemiology aims to understand the important 

determinants of epidemic development in order to develop sustainable schemes for strategic 

and tactical management of diseases. Developing countries usually experience some 

challenges in public health administration that requires space and time specific mitigation 

strategies, e.g., dengue and leptospirosis that becomes prevalent in depressed areas during 

heavy rainfall. 

2. Multilevel Spatiotemporal Model 

 

The prevalence of a disease in the presence of outbreaks is characterized by spatiotemporal 

clustering of infection among the susceptible population. Epidemic cases may take place in 

adjacent locations or areas that are close to each other. Prevalence rates in neighboring areas 

are expected to be in near approximations as they are similar in geographical distribution of 

population at risk and other factors that characterizes dynamics in infection. Presence of 
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diseases in the same area may be due to their common geographic, demographic, health, and 

social conditions. It is therefore logical to infer that these areas are homogeneous relative to 

environmental risks, quality of sanitation, population density and other socioeconomic 

factors. As a result of the dynamic nature of the outbreaks where the population at risk is 

constantly changing and the control treatments vary, it is imperative for these changes in 

spatial and temporal components of infection risk that occur over time to be included in the 

analysis. Hence, spatiotemporal multilevel models addressing the interactions between the 

disease and the environment that is continuously evolving over time could be a useful tool in 

understanding and predicting the spread and the risk associated with the disease. 

 

A space-time interaction is necessary in understanding and characterizing the prevalence of 

a disease as it is generally dictated by conditions indexed by covariates. Also, group-level 

effect should be included since features of groups are often driven by the individuals they 

comprise, which means that these individuals are influenced, in turn, by the “emerged” 

additive feature of the group to which they belong. Furthermore, the inclusion of structural 

change is necessary as there realistically exist in the dynamics of disease spread, that 

temporarily inflicts the population density affecting the disease rates at the susceptible 

setting. 

 

Given observations for N units at T time points, prevalence rate (𝑌𝑖𝑗𝑡) is postulated as a 

function of dependencies in space, time, and space-time interactions. In the presence of an 

outbreak, we account for the group-level factors (community demographics and spatial 

features of the population) that contribute to disease outcomes: 

  ijt

t

jjtjtdijtdijtdijt euZWXY  


 *
1

*0     (1) 
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                           where d = 𝛽𝐼(𝑖){𝑖𝜖𝑁𝑑} +  𝛽∗𝐼(𝑖){𝑖∉𝑁𝑑} 

d = 𝛾𝐼(𝑖){𝑖𝜖𝑁𝑑} +  𝛾∗𝐼(𝑖){𝑖∉𝑁𝑑}      

𝜙𝑑 = 𝜙𝐼(𝑖){𝑖𝜖𝑁𝑑} +  𝜙∗𝐼(𝑖){𝑖∉𝑁𝑑}  

𝜀𝑖𝑗𝑡 =  𝜌𝜀𝑖𝑗𝑡−1 +  𝑎𝑡,   𝑎𝑡 ~ 𝑁(0, 𝜎𝑎
2) 

,0*0 j  if jth unit (higher level) does exhibit any outbreak episode 

The parameters 𝛽, 𝛾 and 𝜙  are the original parameters while 𝛽∗, 𝛾∗ and 𝜙∗  are the 

temporary values due to the occurrence of an epidemic (structural change). Change in values 

of the parameters signifies the effect of the disease on the covariates and spatial 

dependencies of the model, respectively. The error component is investigated for temporal 

dependence. We assume that error is an autoregressive process of order 1. Moreover, it is 

assumed that clusters in Nd are identified a priori and that prior knowledge is available on 

which clusters have been affected by the outbreak. Membership of Nd to the clusters is 

known, and that progression of epidemics in each cluster is homogeneous within but possibly 

heterogeneous across clusters. 

Estimation Procedure 

 

We propose a modified, iterative estimation procedure for spatiotemporal multilevel models 

by infusing the forward search algorithm and a mixed model (maximum likelihood estimation) 

into the backfitting framework.  We also evaluate robustness of the method to presence of 

temporary structural change through a simulation study. 
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The general idea of the estimation procedure is to alternately estimate the parameters 

corresponding to covariates 𝛽 for the individual-level, the parameters corresponding to the 

spatial parameter 𝛾 and the parameters corresponding to the covariates 𝜙 for the group-

level through the imbedded forward search algorithm and mixed model estimation into the 

backfitting algorithm. The method can mitigate contamination that the ordinary least squares 

may possibly encounter during outbreaks, see for example Atkinson (2009) for further details 

on robustness of the forward search algorithm. The temporary structural change (outbreak) 

effect 𝜆0 and 𝜆1 are estimated using the maximum likelihood on the residuals after the effect 

of 𝑋𝑖𝑗𝑡,  𝑊𝑖𝑗𝑡,  𝑍𝑗𝑡  and 𝑢𝑗𝑡  are removed from 𝑌𝑖𝑗𝑡 . Parameter 𝜌  is then estimated by 

recomputing the residuals after the effect of the outbreak dynamics is removed from the 

previous residuals. 

 

Our goal is to construct robust estimates of model parameters in the presence of 

contamination due to the temporary structural change caused by the outbreaks 

(interventions). Suppose that the time of the occurrence of an intervention like an outbreak 

is known a priori.   

 

Vanishing structural change (temporary) characterized through outbreaks is represented by 

an exponential infectious time 𝑔(𝑡∗; 𝜆) =  𝜆0exp {−𝜆1𝑡∗}. The mean value of the distribution 

is assumed to be equal to the removal rate of the disease in the epidemic model. Given the 

closed-form nature of the epidemic dynamic and its known likelihood function, the maximum 

likelihood method is optimal. Incorporation of epidemics may result to alterations on the 

epidemic-free values of 𝛽, 𝛾 and 𝜙, as reflected in Model (1).  
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An estimation procedure consisting of forward search and mixed model estimation imbedded 

in backfitting algorithm is described below: 

Step 1: The parameters are estimated through forward search algorithm and mixed model 

estimation embedded into the backfitting algorithm.   

Step 1a: Mixed Model Estimation 

 i. Fit the model ijtijtijtijt WXY    using all N observations.  Compute the residuals ijte .  

The residuals contain information on other parameters. 

ii. Estimate  and the random components jtu using the residuals in Step i in a multilevel 

model. 

iii. Given the estimates of  and the random components jtu in Step ii, compute new residuals 

and iterate from Step i using these new set of residuals in place of ijtY .  

 

The amount of bias is minimized as the iteration progresses.  The iteration then stops when 

the succeeding estimate values are not very far from the preceding estimate values, e.g., a 

tolerance level ε. 

 

Step 1b: Forward Search Algorithm 

Given the final estimates of the parameters of the mixed model, compute the residuals. 

i.  Choose n observations corresponding to the n smallest residuals. 
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ii. Fit the model ijtijtijtijt WXY    using all n observations.  Compute the 

residuals ijte .   

iii. Estimate  and the random components jtu using the residuals in Step ii in a 

multilevel model. 

iv. Given the estimates of  and the random components jtu in Step iii, compute new 

residuals and iterate from Step ii using these new set of residuals in place of 

ijtY . 

Step 2: The parameters of the temporary structural change will be estimated through 

maximum likelihood estimation since there is a closed-form structure of the disease 

dynamics. This is implemented only on neighborhoods that are infected by the disease. It is 

therefore imperative that prior knowledge of the infected areas is available. A new set of 

residuals is computed ijtijtijt YYe
^

 where jtijtijtijt ZWXY
^^^^

  , 
^

  ,
^

  and
^

  are the 

averaged estimates across all time points. For infected areas, we note that these residuals ijte  

will contain information on the temporary structural change and temporal component 

initially ignored in the Forward Search Algorithm in Step 2. The Maximum Likelihood 

estimates of 0 and 
1 are generated only on infected neigborhood. These estimates are also 

averaged using harmonic mean of the raw estimates. The final residuals may then be 

computed as ijtijtijt YYe
^

 where 









^

1

^

0

^^^^

exp tZWXY jtijtijtijt  for areas with 

outbreaks. Otherwise, the final residuals are defined by ijtijtijt YYe
^

 where 

jtijtijtijt ZWXY
^^^^

  . 
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Step 3: Another regression is performed on the residuals with its lagged values to estimate 

temporal parameter 𝜌. For each ij, estimate 𝜌 using conditional least squares (CLS) in an AR(1) 

model of eijt , i.e., eijt = ρeijt-1 + aijt, say .
^

ij  Compute the average of ij

^

 for all i, j,. i.e. 


 


J

j i

ij

jn

1 1

^^

 . 

These steps are implemented iteratively until parameters do not vary significantly.   

3. Simulation Study 

 

The proposed model with the estimation procedure is evaluated using simulated data from 

the balanced (N = T) and unbalanced (T < N) scenarios adopted from (Bastero and Barrios, 

2011). The balanced case is considered since in panel data analysis, this is the setting where 

most optimal characteristics of existing methods were observed. However, typical panels 

involve a short span of time for several individuals, i.e., unbalanced case. This means that 

asymptotic arguments are heavily reliant on the number of individuals approaching infinity 

(Hsiao, 1986). Also, in reality, it is difficult to compile long time-series and the chance of 

attrition is heightened. 

 

The simulation study aims to exhibit an abstraction of the epidemic behavior and disease 

dynamics. Thus, investigation of robustness of parameter estimates is done on data sets that 

are nested on the following features: data with two clusters vs. five clusters, all clusters are 

contaminated vs. only one cluster is contaminated, infection over short vs. long periods of 

time, changes in parameters of the covariates vs. no apparent change in parameters. The 

number of clusters, 2 or 5, represents population divided into smaller number of susceptible 
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groups or otherwise. Consider a fixed number of N units, dividing the population into 2 and 5 

clusters will look at setting where each neighborhood is comprised of large and small number 

of spatial units, respectively. The scope of the contamination over neighborhoods will be 

manifested by case where only a single cluster is affected and the case where all neighbors 

are affected by the epidemic. The case where a single cluster is infected may be viewed as 

the endemic case, where the infection is maintained in the population. The scenario where 

all clusters are suffering from the outbreak is parallel to those national or international 

concerns due to its high-risk transmissions. Short and long contamination periods were 

considered, some epidemics die down into the susceptible class faster than other epidemics. 

Long contamination periods are defined by 50% of the time points affected while short 

contaminations are defined whenever the disease persist only during 25% of the time points. 

The introduction of the temporary structural change affects the covariate and spatial 

parameter, manifested by the change of value in the original parameter which may in fact 

serve as the indicator for disease severity. It is expected that the larger the difference of β,   

and   is to the actual value, the more severe the disease is, i.e., causing more deviant effects 

on these parameters. The simulation study will also look at the possibility that the epidemic 

will not affect any covariate and spatial features of the population. As a consequence, the 

case wherein no change is made to the parameters will also be included. 

Furthermore, we explored the behavior of the estimates for small and large sample sizes. The 

scenarios considered for balanced and unbalanced data sets are shown in Table 1 and Table 

2, respectively. 
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Table 1. Simulated Data Scenarios on Balanced Data Sets 

NC WC NC WC NC WC NC WC NC WC NC WC NC WC NC WC

Two Balanced Data Sets

(N = T = 20) or Small ; (N = T = 50) or Large

Two Clusters Five Clusters

One-Cluster 

Contamination

All-Cluster 

Contamination

One-Cluster 

Contamination

All-Cluster 

Contamination

Short Time 

Interval

Long Time 

Interval

Short Time 

Interval

Long Time 

Interval

Short Time 

Interval

Long Time 

Interval

Short Time 

Interval

Long Time 

Interval

where NC = no change in the original parameters 
          WC = with change in parameters 
 

For the common data set where T < N, cases with T = 10, 20 and N = 25/26, 30, 50 will be 

investigated. These six combinations generated from the values of T and N for the common 

data set feature the small and large sample sizes. 

Table 2. Simulated Data Scenarios on Unbalanced Data Sets 

NC WC NC WC NC WC NC WC NC WC NC WC NC WC NC WC

Six Common Data Sets

(T = 10, N = 25/26) ; (T = 10, N = 30) ; (T = 10, N = 50)

(T = 20, N = 25/26) ; (T = 20, N = 30) ; (T = 20, N = 50)

Two Clusters Five Clusters

One-Cluster 

Contamination

All-Cluster 

Contamination

One-Cluster 

Contamination

All-Cluster 

Contamination

Short Time 

Interval

Long Time 

Interval

Short Time 

Interval

Long Time 

Interval

Short Time 

Interval

Long Time 

Interval

Short Time 

Interval

Long Time 

Interval

 where NC = no change in the original parameters 
           WC = with change in parameters 
 

The response variable Y was computed from Equation (1). Z was sampled from Normal 

population (=5,000 and 𝜎2=100) while X was sampled from Normal population (=10,000 

and 𝜎2=1000). Furthermore, the spatial units were divided into clusters/neighborhoods and 

spatial dependencies are introduced. Samples are generated in the neighborhood system 

variable W from Poisson distribution where each neighborhood would have mean μ𝑘= k * 
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100, k  = 1,2 for the 2-cluster case and μ𝑘= k * 100, k  = 1,2,…5 for the 5-cluster case. On the 

other hand, the error term was simulated from the AR(1), 𝜀𝑖𝑗𝑡 =  𝜌𝜀𝑖𝑗𝑡−1 +  𝑎𝑡, 𝑎𝑡 ~ 𝑁(0,1) 

with 𝜌 = 0.5  and the random component jtu was simulated from the standard normal 

population. The values of the parameters were set at 𝛽 = 0.52, 𝛾 = 14.6, 𝜙 = 0.61, 𝜆0 =

4,800,000 , 𝜆1 = 2.5. These values were chosen so that each component in the model would 

have significant contribution in the value of each response variable. The temporary structural 

change was manifested through the change in parameters of 𝛽, 𝛾 and 𝜙 to 𝛽∗ = 0.572,  𝛾∗ =

16.06,  𝜙 ∗ = 0.671,  represent a 10% difference in the model parameter values. Higher 

disease severity rates were also considered, resulting to larger differences in the original and 

temporary values of the covariate and spatial parameters. Specifically, 20%, 30% and 40% 

difference were considered in the temporary values of 𝛽 , 𝛾  and 𝜙  to 𝛽∗ = 0.624,  𝛾∗ =

17.52,  𝜙 ∗ = 0.732 and 𝛽∗ = 0.676,  𝛾∗ = 18.98,   𝜙 ∗ = 0.793 and 𝛽∗ = 0.728,  𝛾∗ =

20.44, 𝜙 ∗ = 0.854, respectively. Spatial variables and covariates were generated from the 

exponential function that was used to define outbreak dynamics (dies off over time). 

Response variable values (prevalence rate) dramatically increased at the beginning of the 

outbreak and returned to “normal” values as the outbreak dissipates.  

4. Results and Discussion 

 

Data generated from various simulation scenarios presented in the previous section are used 

in evaluating robustness of the estimated spatiotemporal multilevel model to presence of 

structural change. The performance of the hybrid algorithm was assessed by computing the 

absolute percent difference between estimates and simulated values of the parameters. The 

hybrid algorithm is benchmarked on the MLE estimates using the same simulated data. 
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Details of other scenarios for unbalanced data are no longer presented since the hybrid 

method yield similar results for various cases of unbalancedness. 

4.1    No Structural Change 

 

We also investigate the performance of the hybrid method in the absence of structural 

change (outbreak-free). In Table 3, balanced and unbalanced data sets were generated for 

small and large data sets, each divided into 2 or 5 clusters. Actual values of the parameters 

are specified similar to that in Section 3.  

 

In both balanced and unbalanced data, the hybrid method provides desirable estimates for 

the parameters of group-level and individual-level covariates as well as for the spatial 

parameters. Parameter estimates are very close to the true values of the parameters, except 

for the temporal parameters that are estimated last in the backfitting algorithm. As Santos 

and Barrios (2012) noted, backfitting estimates poorly those parameters that are estimated 

towards the end in the iteration. See Table 3 for further details.   

Table 3. No Structural Change  

  Balanced Data Set (T = N) 

  % Difference Between Estimates and True Parameters   

    𝛽 𝛾 𝜙 𝜌 
Scenarios   Hybrid MLE Hybrid MLE Hybrid MLE Hybrid 

Small Data Set 
(T=20, N=20) 

2 clusters 0.111 0.000 0.009 0.005 0.197 0.000 81.208 

5 clusters 0.191 0.019 0.014 0.000 0.328 0.033 71.674 

Large Data Set 
(T=50, N=50) 

2 clusters 0.425 0.000 0.171 0.030 0.820 0.016 73.425 

5 clusters 0.222 0.000 0.001 0.008 0.377 0.000 94.926 

Unbalanced Data Set (T < N) 

  
% Difference Between Estimates and True Parameters   

  𝛽 𝛾 𝜙 𝜌 
Scenarios   Hybrid MLE Hybrid MLE Hybrid MLE Hybrid 

(T= 10,  
N = 25/26) 

2 clusters 0.378 0.019 0.103 0.003 0.705 0.016 75.786 

5 clusters 0.317 0.019 0.010 0.000 0.557 0.066 88.211 

(T= 10,  2 clusters 0.127 0.019 0.056 0.024 0.262 0.033 94.746 
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N = 30) 5 clusters 0.421 0.019 0.017 0.005 0.738 0.016 96.403 

(T= 10,  
N = 50) 

2 clusters 0.179 0.000 0.089 0.050 0.361 0.033 87.195 

5 clusters 0.236 0.000 0.007 0.010 0.410 0.016 86.966 

(T= 20,  
N = 25/26) 

2 clusters 0.290 0.000 0.118 0.019 0.574 0.016 74.081 

5 clusters 0.400 0.000 0.028 0.003 0.721 0.016 93.907 

(T= 20,  
N = 30) 

2 clusters 0.216 0.000 0.041 0.015 0.410 0.033 85.349 

5 clusters 0.083 0.000 0.011 0.010 0.164 0.016 92.924 

(T= 20,  
N = 50) 

2 clusters 0.449 0.000 0.132 0.025 0.836 0.000 76.116 

5 clusters 0.236 0.000 0.003 0.006 0.410 0.000 98.657 

 

Absolute percent difference between estimates and their true parameter values are 

comparable for the hybrid method and the MLE. Regardless of the sample size, whether or 

not the panel is balanced, the hybrid method and MLE are comparable, both methods yield 

estimates that are near the true parameter values.   

4.2    Presence of Structural Change 

 

Structural change is simulated with the inclusion of outbreak parameters (𝜆0  and 𝜆1) and 

included in hybrid estimation. This represents the temporary structural change that causes 

atypical observations in the dataset. The dynamics of epidemics have been simulated so that 

it represents cases where the outbreak poses a threat over a long period of time and those 

where outbreaks are easily controlled and the vulnerable population quickly recovers from 

the threat. Moreover, the outbreak can affect only a contained locale while it can also infest 

the entire population. Two case considered inducing the outbreak in only one cluster or in all 

clusters. With structural change, spatial parameters, group-level and individual-level 

covariates are affected. Several contamination levels were considered, namely 10%, 20%, 

30% and 40% to illustrate the severity of the effect of the epidemic in the model. As the 

epidemic becomes quite severe, changes in the parameters becomes more remarkable. 

Efficiency of the procedure in generating robust estimators was also assessed relative to the 

clustering of the population into small or large number of neighborhoods.   
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4.2.1    Contamination in One Cluster 

 

Contamination in one cluster represents the scenario that outbreak is endemic, i.e., 

contamination is confined in a specific location. Hybrid estimation method was used on both 

balanced and unbalanced data sets where onset of the outbreaks was infused in only one 

cluster. Generally, hybrid method provides robust estimates for both balanced and 

unbalanced data sets in one-cluster contamination, particularly when no structural change is 

present or short contamination periods are involved. Robust estimates are also achieved 

whenever the population is divided into large number of clusters.  Moreover, in balanced 

cases, estimates close to the actual values are obtained even with minimal number of spatial 

units. For unbalanced data, increasing sample size produces comparable results, supporting 

further the efficiency of the method in small samples. This is especially useful in epidemiology 

where public health costs are ideally minimized with fewer individuals monitored and for 

shorter follow-up periods to avoid higher attrition rates. The system of taking subsets of 

parameters for simultaneous estimation minimizes the burden in convergence of most 

estimation methods. This is particularly true for the maximum likelihood estimation, 

divergence is often realized whenever large number of parameters are estimated. A 

comparison is made between the estimates of the hybrid estimation method and the 

maximum likelihood estimation.  See Tables 4 and 5 for details of cases with one 

contaminated cluster in balanced data. 

Table 4. Balanced, Small Data Set (T = 20, N = 20), Contamination in One Cluster 

Two Clusters 

  
% Difference Between Estimates and True Parameters   

  𝛽 𝛾 ∅ 𝜆0 𝜆1 𝜌 

   Hybrid MLE Hybrid MLE Hybrid MLE Hybrid Hybrid Hybrid 

Case 1: contamination in 1 cluster, short period, no change in parameters 

   0.265 290.6 0.107 1682.3 0.508 281.2 0.002 0.001 20.7 
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Case 2: contamination in 1 cluster, short period, with change in parameters 

 

10
% 0.286 288.9 0.177 1706.7 0.541 295.8 3.147 1.392 19.2 

20
% 0.221 288.3 0.093 1731.0 0.443 308.5 6.361 2.855 65.9 

30
% 0.176 287.2 0.110 1755.2 0.361 321.9 9.247 4.221 66.4 

40
% 0.221 286.1 0.094 1779.3 0.443 335.4 11.9 5.550 65.6 

Case 3: contamination in 1 cluster, long period, no change in parameters 

   0.264 290.6 0.112 1682.3 0.525 281.2 0.002 0.001 20.8 

Case 4: contamination in 1 cluster, long period, with change in parameters 

 

10
% 1.724 270.9 

19.89
1 1627.1 12.21 289.8 2.530 1.107 42.9 

20
% 2.007 12.6 

35.40
3 3.821 19.8 850.3 5.079 2.256 42.3 

30
% 2.849 267.1 

53.07
2 1714.2 29.34 337.29 7.430 3.344 42.09 

40
% 3.781 265.03 

70.70
7 1757.74 39.08 361.18 9.673 4.410 41.97 

Five Clusters 

  % Difference Between Estimates and True Parameters   
  𝛽 𝛾 ∅ 𝜆0 𝜆1 𝜌 

   Hybrid MLE Hybrid MLE Hybrid MLE Hybrid Hybrid Hybrid 

Case 1: contamination in 1 cluster, short period, no change in parameters 

   0.280 79.80 0.062 159.903 0.295 251.88 0.017 0.007 9.224 

Case 2: contamination in 1 cluster, short period, with change in parameters 

 

10% 0.280 84.71 0.062 161.988 0.295 248.57 3.417 1.505 26.67 

20% 0.280 89.69 0.062 164.058 0.295 245.13 6.625 2.969 26.58 

30% 0.193 94.71 0.014 166.123 0.328 241.59 9.638 4.394 30.39 

40% 0.171 75.46 0.011 22.668 0.295 77.738 12.45 5.774 30.70 

Case 3: contamination in 1 cluster, long period, no change in parameters 

   0.248 79.79 0.066 159.904 0.230 251.90 0.017 0.007 12.15 

Case 4: contamination in 1 cluster, long period, with change in parameters 

 

10% 4.304 75.71 2.187 155.467 
12.55

7 247.77 3.226 1.416 9.412 

20% 8.939 11.44 4.306 4.387 
25.49

2 792.13 6.268 2.798 9.464 

30% 13.61 76.59 6.348 164.327 
38.31

1 267.13 9.137 4.145 9.437 

40% 18.13 52.86 8.464 31.828 
51.03

3 18.164 11.82 5.450 9.428 

 

Table 5. Balanced, Large Data Set (T = 50, N = 50), Contamination in One Cluster 

Two Clusters 

  
% Difference Between Estimates and True Parameters   

  𝛽 𝛾 ∅ 𝜆0 𝜆1 𝜌 

   Hybrid MLE Hybrid MLE Hybrid MLE Hybrid Hybrid Hybrid 

Case 1: contamination in 1 cluster, short period, no change in parameters 
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   0.205  12.33 0.164 767.60 0.443 384.62 0.002 0.001 6.000  

Case 2: contamination in 1 cluster, short period, with change in parameters 

 

10
% 0.205  

12.8 
0.258 

752.8 
0.492 

377.
9 3.298 1.452 46.45 

20
% 0.209 

26.6 
0.188 

778.6 
0.459 

414.
8 6.394 2.864 46.43 

30
% 0.584 

34.2 
0.312 

805.4 
1.197 

441.
1 9.298 4.234 50.37 

40
% 0.207 

16.8 
0.260 

822.1 
0.492 

417.
3 12.03 5.566 46.18 

Case 3: contamination in 1 cluster, long period, no change in parameters 

   0.226 12.33 0.163 767.60 0.475 384.62 0.001 0.001 5.772 

Case 4: contamination in 1 cluster, long period, with change in parameters 

 

10
% 1.743 

13.9 
17.658 

738.0 
11.25 

372.
8 2.598 1.138 47.39 

20
% 3.277 

28.9 
34.99 

782.8 
21.95 

420.
4 5.072 2.253 47.51 

30
% 5.195 

37.9 
52.52 

828.6 
33.44 

458.
1 7.424 3.342 47.38 

40
% 6.373 

23.2 
69.87 

864.7 
43.51 

447.
9 9.659 4.405 47.38 

Five Clusters 

  % Difference Between Estimates and True Parameters   
  𝛽 𝛾 ∅ 𝜆0 𝜆1 𝜌 

   Hybrid MLE Hybrid MLE Hybrid MLE Hybrid Hybrid Hybrid 

Case 1: contamination in 1 cluster, short period, no change in parameters 

   0.250 18.1 0.026 63.6 0.361 126.4 0.003 0.001 5.749 

Case 2: contamination in 1 cluster, short period, with change in parameters 

 

10% 0.250 16.8 0.026 62.9 0.361 126.8 3.343 1.473 13.69 

20% 0.249 16.2 0.002 65.1 0.426 133.0 6.477 2.904 14.04 

30% 0.250 15.7 0.026 67.3 0.361 139.3 9.408 4.289 13.56 

40% 0.246 15.1 0.003 69.6 0.426 145.8 12.17 5.639 13.90 

Case 3: contamination in 1 cluster, long period, no change in parameters 

   0.279 17.7 0.024 62.1 0.410 123.4 0.002 0.001 5.901 

Case 4: contamination in 1 cluster, long period, with change in parameters 

 

10% 0.401 15.9 1.830 60.7 3.754 122.9 3.106 1.367 17.92 

20% 0.538 15.6 3.607 64.7 7.836 133.1 6.030 2.698 19.29 

30% 
0.673 15.3 5.442 68.7 

12.06
6 

143.4 8.778 3.989 19.74 

40% 
0.817 14.9 7.220 72.8 

16.13
1 

153.8 11.38 5.250 19.92 

 

Effect of Number of Clusters (Balanced Data) 

 

For balanced data, estimates are very close to true values of 𝛽 , 𝛾  and 𝜙  except when 

contamination is  prolonged with changes in the parameter values.  In small balanced data, 
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when contamination is prolonged with associated changes in parameter values, spatial 

parameter 𝛾 is the most affected in two cluster case while in the five-cluster case, the group-

level covariate 𝜙 is the most affected. More prominent structural change drives parameters 

estimates away from their true values, e.g., spatial parameter  𝛾 in two-cluster case, and 

group-level covariate parameter 𝜙  in the five cluster cases. Similar is true even in large 

balanced dataset for the two-cluster case. However, in five cluster case, the hybrid procedure 

provides robust estimates for all parameters. 

 

Outbreak parameters are robustly estimated regardless of length of time series, sample size, 

and severity of structural change. The temporal parameter 𝜌, remains to be poorly estimated 

in two-cluster case, this is especially true whenever no change in 𝛽, 𝛾 and 𝜙 are considered 

in the data generating process. 

 

Effect of Number of Clusters (Unbalanced Data) 

 

In unbalanced data with two clusters, there is difficulty in estimating the spatial and the 

group-level covariate parameters whenever structural changes occur over a long period. As 

the severity of structural change increases, these parameter deviate away from their true 

values. Outbreak parameters are very well estimated even in unbalanced data. Temporal 

parameter is still poorly estimated when there are prolonged contaminations with or without 

change in parameters. Hybrid method is unable to properly estimate the temporal parameter 

as the disease become persistent.  For five-cluster with unbalanced data, hybrid method 

provide robust estimates for the spatial, individual- and group-level covariates and temporal 

parameters. This illustrates the advantage of hybrid method in cases when larger numbers of 
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clusters are involved. Outbreak mitigation programs are made more efficient when 

population is divided into several geographical clusters, resulting into more efficient 

identification and prevention of diseases.  See Table 6 for further details. 

  

Estimates in the five-cluster scenario are comparable with those in two-cluster scenarios. In  

unbalanced data, number of clusters have minimal effect on the characteristics of the hybrid 

estimates. 

Table 6. Unbalanced Data Set (T = 10, N = 50), Contamination in One Cluster  

Two Clusters 

  
% Difference Between Estimates and True Parameters   

  𝛽 𝛾 ∅ 𝜆0 𝜆1 𝜌 

   Hybrid MLE Hybrid MLE Hybrid MLE Hybrid Hybrid Hybrid 

Case 1: contamination in 1 cluster, short period, no change in parameters 

   0.264 53.5 0.373 3326.2 0.656 1666.6 0.009 0.004 35.02 

Case 2: contamination in 1 cluster, short period, with change in parameters 

 

10
% 

0.219 52.3 0.185 3347.9 0.475 1673.4 3.224 1.422 0.931 

20
% 

0.264 109.3 0.373 3385.9 0.656 1793.8 6.235 2.796 1.041 

30
% 

0.274 138.1 0.263 3428.0 0.851 1866.4 9.061 4.130 1.617 

40
% 

0.265 53.0 0.446 3424.5 0.957 1710.6 11.71 5.424 1.807 

Case 3: contamination in 1 cluster, long period, no change in parameters 

   0.204 60.2 1.936 3742.1 1.279 1875.0 0.077 0.033 60.41 

Case 4: contamination in 1 cluster, long period, with change in parameters 

 

10
% 

0.907 52.9 16.49 3366.0 9.21 1682.8 2.635 1.155 55.03 

20
% 

1.479 110.6 31.37 3420.3 17.11 1811.9 5.194 2.310 55.51 

30
% 

2.121 139.9 46.09 3478.8 25.05 1893.1 7.629 3.439 55.54 

40
% 

5.270 55.5 68.68 3491.6 41.16 1746.0 9.700 4.425 53.86 

Five Clusters 

  % Difference Between Estimates and True Parameters   
  𝛽 𝛾 ∅ 𝜆0 𝜆1 𝜌 

   Hybrid MLE Hybrid MLE Hybrid MLE Hybrid Hybrid Hybrid 

Case 1: contamination in 1 cluster, short period, no change in parameters 

   0.251 93.17 0.008 325.75 0.426 646.69 0.001 0.000 3.909 

Case 2: contamination in 1 cluster, short period, with change in parameters 

 10% 0.251 92.71 0.008 328.45 0.426 654.05 3.271 1.443 1.197 
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20% 0.250 92.15 0.011 331.16 0.528 661.59 6.324 2.839 1.966 

30% 0.251 91.63 0.024 333.86 0.658 669.08 9.182 4.190 0.989 

40% 0.252 90.50 0.007 336.57 0.485 677.57 11.86 5.500 20.36 

Case 3: contamination in 1 cluster, long period, no change in parameters 

   0.270 82.37 0.134 289.69 0.115 575.93 0.020 0.008 10.89 

Case 4: contamination in 1 cluster, long period, with change in parameters 

 

10% 0.545 77.81 1.502 293.89 2.803 593.69 3.142 1.383 25.11 

20% 0.818 73.15 2.869 298.10 5.721 611.59 6.110 2.734 26.86 

30% 1.092 68.54 4.237 302.31 8.623 629.46 8.902 4.048 27.32 

40% 1.366 63.38 5.604 306.52 11.54 648.20 11.53 5.326 27.44 

 

 Effect of Sample Size   

Increasing the number of spatial units N and time points T in the unbalanced case ensures 

robust performance of the hybrid estimation method. In two-cluster case, increasing the 

number of spatial units for a fixed time point produces comparable results. Regardless of the 

use of sample size (25/26) or large (30, 50) number of spatial time points, robust estimates 

for the parameters  𝛽, 𝛾, 𝜙, 𝜆0 and 𝜆1 are obtained in cases with short contamination period 

or no structural changes in the parameters. Relatively large absolute differences between 

estimated spatial parameter 𝛾 and their true values for cases when severe structural changes 

are present as caused by longer epidemic episodes. Fixing the number of spatial units and 

increasing the number of time points results to better “forward searched” estimates.  

 

In the five-cluster case, further improvement in estimates are realized with increasing sample 

size, consistent with usual asymptotic optimality. However, it should be noted that hybrid 

estimation method can produce generally robust estimated models even with small number 

of observations.   

 

MLE vs. Hybrid Estimation 
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MLE is generally affected by structural change, specially, group-level and individual-level 

covariates and spatial parameters for both balanced and unbalanced data sets. In the 

presence of structural change, MLE is seriously influenced by atypical observations, causing 

distortion of the estimates.  Estimates from the  hybrid method on the other hand, exhibit 

robustness in the presence of temporary structural change. 

4.2.2   Contamination in All Clusters 

 

Hybrid estimation procedure is able to generate robust estimates for balanced and 

unbalanced data sets. The forward search algorithm is able to abate effects on the estimates 

of parameters 𝛽 , 𝛾  and 𝜙  affected by structural change. Amidst variation caused by 

temporary structural change, proposed method is able recover true group-level and 

individual-level covariate and spatial parameters  𝛽, 𝛾 and 𝜙, respectively.  

 

In the two-cluster case, comparable results (relative to MLE) are achieved for some 

parameters. Minimal discrepancies in absolute percent differences are observed for both 

small and large sample sizes. For five-cluster comparison of small and large samples, better 

estimates are achieved for the small sample in cases with short contamination periods. 

Minimal absolute percent differences are noted for cases with longer contamination periods.  

See Tables 7 and 8 for further details. 

 

Effect of Number of Clusters (Balanced Data)   

 

The proposed method provides robust estimates for the group-level covariate and the 

individual-level covariate, spatial and outbreak parameters of the balanced data set. When 𝛽, 
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𝛾  and 𝜙  are contaminated by 10%, 20%, 30% and 40% of its actual values, 𝜌  is poorly 

estimated for small and large balanced data set. See Tables 7 and 8 for details.  

 

Table 7. Balanced, Small Data Set (T = 20, N = 20), Contamination in all Clusters 

Two Clusters 

  
% Difference Between Estimates and True Parameters   

  𝛽 𝛾 ∅ 𝜆0 𝜆1 𝜌 

   Hybrid MLE Hybrid MLE Hybrid MLE Hybrid Hybrid Hybrid 

Case 1: contamination in all clusters, short period, no change in parameters 

   0.099 0.923 0.044 8.992 0.311 950.3 0.043 0.019 99.96 

Case 2: contamination in all clusters, short period, with change in parameters 

 

10
% 1.276 3.135 1.133 7.436 1.492 1019.8 2.73 1.198 98.19 

20
% 2.453 7.115 2.310 2.184 2.656 897.2 5.35 2.385 98.09 

30
% 3.631 5.192 3.486 3.064 3.836 91.90 7.83 3.542 97.89 

40
% 4.808 3.962 4.662 4.923 5.016 97.26 10.19 4.670 97.65 

Case 3: contamination in all clusters, long period, no change in parameters 

   0.150 0.923 0.027  8.991 0.230 950.29   0.045 0.019 99.28 

Case 4: contamination in all clusters, long period, with change in parameters 

 

10
% 4.24 5.981 4.079 4.578  4.39 1022.6  1.821 0.796 97.19 

20
% 8.37 12.577 8.197 3.821  8.49 850.28 3.618 1.597 96.91 

30
% 12.49 14.423  12.316 6.166  12.61 101.15 5.351 2.385 96.72 

40
% 16.61 19.058 16.435 10.83  16.71 105.15 7.022 3.160 96.55 

Five Clusters 

  % Difference Between Estimates and True Parameters   
  𝛽 𝛾 ∅ 𝜆0 𝜆1 𝜌 

   Hybrid MLE Hybrid MLE Hybrid MLE Hybrid Hybrid Hybrid 

Case 1: contamination in all clusters, short period, no change in parameters 

   0.249 0.365 0.025 7.569 0.000 878.21 0.047 0.020 82.49 

Case 2: contamination in all clusters, short period, with change in parameters 

 

10% 1.425 2.865  1.201 5.069  1.180 880.70  3.273 1.442 96.21 

20% 2.602 6.231 2.378 1.238 2.361 832.84 6.377 2.860 96.41 

30% 3.745 9.173  3.552 1.703  3.607 835.77  9.285 4.236 96.49 

40% 4.895 10.36 4.725 2.430  4.819 888.21  12.02 5.573 96.51 

Case 3: contamination in all clusters, long period, no change in parameters 

   0.214 0.365 0.022 7.569 0.066 878.21 0.047 0.020 85.92 

Case 4: contamination in all clusters, long period, with change in parameters 

 
10% 4.342 5.635 4.140 1.830  4.180 831.85  2.192 0.960 93.17 

20% 8.469 11.44 8.258 4.387 8.279 792.13  4.332 1.920 93.19 
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30% 12.59 16.23  12.38 8.762  12.38 842.83 6.378 2.861 93.22 

40% 16.69 21.52 16.49 14.052  16.51 847.72  8.339 3.783 93.23 

 

Table 8. Balanced, Large Data Set (T = 50, N = 50), Contamination in All Clusters   

Two Clusters 

  
% Difference Between Estimates and True Parameters   

  𝛽 𝛾 ∅ 𝜆0 𝜆1 𝜌 

 
  

Hybri
d MLE Hybrid MLE Hybrid MLE Hybrid Hybrid Hybrid 

Case 1: contamination in all clusters, short period, no change in parameters 

   0.215 0.038 0.068 1.914 0.246 30.721 0.016 0.007 17.31 

Case 2: contamination in all clusters, short period, with change in parameters 

 

10% 2.348 2.481 2.196 0.490 1.869 32.426 2.460 1.078 95.00 

20% 4.494 4.038 4.326 1.945 3.967 35.705 4.818 2.139 94.97 

30% 7.025 7.942 6.585 5.999 5.295 37.098 7.066 3.177 94.83 

40% 8.748 9.769 8.582 7.717 8.213 42.082 9.209 4.192 94.68 

Case 3: contamination in all clusters, long period, no change in parameters 

   0.237 0.048 0.067 1.814 0.295 31.825 0.016 0.007 16.14 

Case 4: contamination in all clusters, long period, with change in parameters 

 

10% 4.929 5.038 4.750 3.005 4.377 35.836 1.671 0.729 89.96 

20% 9.620 9.135 9.433 6.912 9.033 42.705 3.302 1.454 90.07 

30% 14.71 16.192 14.25 14.309 12.92 44.607 4.881 2.168 90.03 

40% 19.01 20.577 18.80 18.531 18.34 52.902 6.408 2.871 89.94 

Five Clusters 

  % Difference Between Estimates and True Parameters   
  𝛽 𝛾 ∅ 𝜆0 𝜆1 𝜌 

   Hybrid MLE Hybrid MLE Hybrid MLE Hybrid Hybrid Hybrid 

Case 1: contamination in all clusters, short period, no change in parameters 

   0.252 1.096 0.004 3.616 0.279 376.52 0.013 0.006 8.488 

Case 2: contamination in all clusters, short period, with change in parameters 

 

10% 2.384 1.673 2.133 0.668 1.836 351.84 2.941 1.294 96.90 

20% 4.517 4.731 4.261 2.442 3.967 346.56 5.723 2.559 97.02 

30% 6.649 5.154 6.389 2.673 6.082 380.87 8.348 3.790 97.09 

40% 8.782 8.962 8.517 6.564 8.197 367.87 10.83 4.989 97.11 

Case 3: contamination in all clusters, long period, no change in parameters 

   
0.007 

   0.283 1.038 0.425 3.436 0.328 357.70 0.013 0.006 7.498 

Case 4: contamination in all clusters, long period, with change in parameters 

 

10% 4.978 3.712 4.689 1.315 4.328 362.62 2.002 0.877 91.72 

20% 9.673 9.269 9.370 7.037 8.984 343.15 3.937 1.742 91.76 

30% 14.37 13.15 14.05 10.790 13.64 370.07 5.796 2.592 91.77 

40% 19.06 17.96 18.73 15.564 18.30 376.87 7.584 3.427 91.77 

 

Effect of Number of Clusters (Unbalanced) 
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Increasing sample size for a fixed set of 10 time points in a two-cluster case does yield 

improvements in parameter estimates. Extending the number of clusters to five, still no 

improvement on the quality of parameter estimates for an increase in the number of 

observations. With an increase from 30 to 50 spatial units, cases with short contamination 

period, comparable estimates are achieved for the individual-level covariate 𝛽, but the group-

level covariate and the spatial parameters are not estimated well. Furthermore, for prolonged 

structural changes, better estimates are achieved for the individual-level covariate 𝛽 and the 

group-level covariate 𝜙. However, the spatial parameter 𝛾 yield more optimal estimates in 

the case of 30 spatial units  

 

In five-cluster scenario, increasing sample size with short contamination period is involved, 

better estimates are obtained for all parameters except for the group-level covariate 𝜙. While 

for the cases with prolonged contamination period, notable differences are detected for all 

the parameter but still comparable except for the outbreak parameters which does not vary 

over different sample sizes. Similar performance for both two-cluster and five-cluster are 

observed. Number of clusters does not affect the robustness of the estimates computed for 

all parameters. 

Table 9. Unbalanced (T = 10, N = 50), Contamination in All Cluster  

Two Clusters 

  
% Difference Between Estimates and True Parameters   

  𝛽 𝛾 ∅ 𝜆0 𝜆1 𝜌 

   Hybrid MLE Hybrid MLE Hybrid MLE Hybrid Hybrid Hybrid 

Case 1: contamination in 1 cluster, short period, no change in parameters 

   0.239 0.19 0.082 9.42 0.459 148.84 0.001 0.001 24.27 

Case 2: contamination in 1 cluster, short period, with change in parameters 

 

10
% 

0.239 1.65 0.082 8.96 0.459 158.98 3.052 1.345 13.75 

20
% 

0.359 3.08 0.187 7.53 0.367 160.41 5.917 2.649 14.03 

30
% 

0.478 4.50 0.291 6.11 0.421 161.84 8.608 3.914 14.33 
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40
% 

0.456 10.19 0.072 0.58 0.367 158.84 11.14 5.143 14.64 

Case 3: contamination in 1 cluster, long period, no change in parameters 

   0.245 0.19 0.066 9.44 0.656 149.2 0.107 0.046 85.73 

Case 4: contamination in 1 cluster, long period, with change in parameters 

 

10
% 

3.276 4.50 2.962 6.12 3.197 162.97 2.148 0.940 91.19 

20
% 

5.982 6.92 5.784 5.47 6.328 191.69 4.305 1.906 91.16 

30
% 

8.851 10.25 8.644 2.13 9.164 195.02 6.369 2.853 90.99 

40
% 

11.72 17.37 11.503 6.37 12.00 188.28 8.347 3.781 90.79 

Five Clusters 

  % Difference Between Estimates and True Parameters   
  𝛽 𝛾 ∅ 𝜆0 𝜆1 𝜌 

   Hybrid MLE Hybrid MLE Hybrid MLE Hybrid Hybrid Hybrid 

Case 1: contamination in 1 cluster, short period, no change in parameters 

   0.252 5.23 0.016 17.16 0.326 1788.5 0.011 0.001 1.464 

Case 2: contamination in 1 cluster, short period, with change in parameters 

 

10% 0.262 1.48 0.045 13.41 0.426 1792.3 3.637 1.610 9.671 

20% 0.250 2.27 0.334 9.66 0.546 1796.0 6.999 3.159 9.605 

30% 0.251 2.21 0.206 11.18 0.485 2040.9 10.12 4.654 9.598 

40% 0.251 9.77 0.112 2.16 0.436 1803.5 13.02 6.096 9.645 

Case 3: contamination in 1 cluster, long period, no change in parameters 

   0.261 5.98 0.010 19.61 0.639 2044 0.101 0.044 84.15 

Case 4: contamination in 1 cluster, long period, with change in parameters 

 

10% 3.121 0.94 2.867 9.69 3.492 1596.1 2.591 1.138 93.14 

20% 5.980 6.50 5.724 4.13 6.344 1601.7 5.139 2.290 93.37 

30% 8.841 6.54 8.581 6.89 9.197 2046.1 7.556 3.414 93.43 

40% 11.70 14.79 11.44 2.85 12.05 1809.3 9.851 4.512 93.42 

 

Effect of Sample Size 

 

For unbalanced data with ten time points, forward searched estimates of the group-level and 

individual-level covariates and spatial parameters are close to the true parameter values. The 

use of MLE in the estimation of the outbreak parameters is also beneficial as it generates 

optimal results, no large absolute percent differences are detected in three values of N, 

namely 25/26, 30 and 50. Moreover, the temporal component 𝜌 has been well-estimated in 

the backfitting procedure in cases where short contamination periods are involved.  
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In unbalanced case, forward searched estimates for 𝛽, 𝛾, ∅, 𝜆0 and 𝜆1 are comparable over 

different number of time points. It can be noted that the estimates from the unbalanced data 

sets with ten time points provides slightly better estimates than with twenty-time points. This 

is especially true for the temporal component. For the unbalanced case with twenty-time 

points, the temporal component 𝜌 has been poorly estimated even in cases where short 

contamination periods are involved. 

 

MLE vs. Hybrid Method 

For the balanced data sets, hybrid method is more desirable over MLE specially for the group-

level covariate parameter 𝜙. This is also true for the unbalanced data. This can be attributed 

to the fact that the pure MLE procedure is affected by atypical observations that is distorting 

the results of the estimates in the presence of structural change. 

5.   Conclusions 

 

With motivation from epidemiology, a generalized multilevel model is postulated, this is 

capable of summarizing spatial and temporal dependencies associated with the responses 

like prevalence rate. We proposed an estimation procedure based on the backfitting 

algorithm embedded with forward search algorithm and MLE of a mixed model to estimate 

the group-level covariate effect, individual-level covariate effect and the spatial parameters. 

A temporary structural change (e.g., those caused by disease outbreaks) is considered and 

robustness of the estimates are evaluated through a simulation study. 
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Simulation studies shows that the hybrid method and the MLE produced comparable 

estimates under scenarios of no structural change. Advantages are observed in favor of the 

hybrid estimation method in cases when there is a structural change. This advantage is 

highlighted whenever the contamination effect is temporary in the group-level covariate, 

individual-level covariate and spatial variables that are highly different from the true 

parameter values. The forward search algorithm is able to produce robust estimates in the 

hybrid method during episodes of temporary structural change. Furthermore, backfitting is 

more computationally beneficial as it provides higher chances of convergence when several 

parameters are involved. The postulated model is a robust abstraction of the epidemic 

outbreak dynamics that can capture the general features not affected by erratic fluctuations 

during an outbreak. 
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