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ABSTRACT 

 

A semiparametric mixed analysis of covariance model is postulated. This model is estimated 

by imbedding restricted maximum likelihood estimation and smoothing splines regression into 

the backfitting algorithm.  Bootstrap method is further incorporated into the algorithm.  The 

heterogeneous effect of covariates across groups of experimental units is postulated to affect 

the response through a nonparametric function to mitigate overparameterization.  Simulation 

studies exhibited the capability of the postulated model (and estimation procedures) in 

increasing predictive ability and stabilizing variance components estimates even for small 

sample size and with minimal covariate effect, and regardless of the extent of misspecification 

error.   

 

 

Keywords: mixed ANCOVA model, nonparametric regression, backfitting, bootstrap, random 

effects, variance components 

 

 

1. Introduction 

 Linear models have been very popular in explaining continuous response variables 

through some pre-determined predictors.  Given a linear model, the method of ordinary least 

squares (OLS) provides optimal estimates of the regression coefficients (Arnold, 1981).  

However, optimality of OLS is ensured only when the model is correctly specified.  There are 

many situations where the linear model is too stringent to fit to the data (Christensen, 2011; 

Keppel and Winkens, 2004; Wu, 2010).  There are also instances where some predictors are 

erroneously measured (Sheather, 2009).  It is also possible that the measured proximate 

indicator for a predictor is a very tentative representation of the target predictor.   Many 

solutions are proposed to resolve these issues (Dornheim and Brazauskas, 2011; Huitema, 

1980; Milliken and Johnson, 2009), among them, the use of a nonlinear regression model, 

where the link function, i.e., the functional form on the dependence of the response on one or 

more of the predictors, is assumed to follow a nonlinear structure.  In a more general scenario, 

the response is not assumed to follow a parametric link with the predictors, but rather a 

nonparametric function (Hardle, 1994; Mooney and Duval, 1993; Wang, 2011).   

  In experimental studies, one is interested in estimating the effect of a factor to a 

response.  Thus, experimental units are carefully chosen so that all other factors that could 

affect the response are controlled (Montgomery, 2013).  In the course of the experimentation, 

all conditions that might influence the response are controlled so that the “effect” manifested 

by experimental units can be attributed solely to the treatment that is varied among group of 

experimental units.  In many cases though, the only experimental units available are not really 

homogeneous.  In the same context, it is also possible that certain factors cannot be controlled 

during experimentation.  For example, in In Vivo experiments, the diet of the subjects cannot 
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be controlled.  In this case, the experimenter would measure variables/indicators that could 

differentiate experimental units (accounting for heterogeneity at the start of the study) or 

measure the factors that were not controlled during experimentation.  These covariates are then 

included in the analysis. 

 In an experiment that includes some covariates like those described above, analysis of 

covariance is used to measure the treatment effect which is the main goal of the experiment.  

The covariates could exert influence on the response variable and thus cannot be ignored in the 

analysis.  However, the effect of covariates is “set aside” to facilitate correct measurement of 

the treatment effect (Montgomery, 2013; Searle, Casella and McCulloch, 1992).  And 

oftentimes, these covariates are assumed to have linear effect on the response variable.  

 In this paper, we propose to account for the effect of the covariate to follow a 

nonparametric structure.  This will ensure that the portion of the response attributed to the 

covariate is appropriately accounted for and set aside so that the treatment effect can be 

correctly measured.  A semiparametric model with nonparametric covariate effects and the 

random treatment effects assumed to follow a parametric structure is thus postulated. 

This study aims (1) to postulate a mixed ANCOVA model in a semiparametric 

framework, (2) to estimate the postulated model through a hybrid backfitting algorithm, and 

(3) to evaluate the proposed procedures relative to the standard procedure in terms of predictive 

ability and stability of variance components estimates through simulation.  

 

2.  Parametric Mixed ANCOVA Model 

 The parametric mixed analysis of covariance (ANCOVA) model where the variable of 

interest, Y, is represented as a function of a covariate and the factors. This is given by 

(Montgomery, 2013; Keppel and Winkens, 2004) 

    𝑌𝑖𝑗𝑘 = 𝑋𝑖𝑗𝑘𝛽 + 𝜏𝑗 + 𝛿𝑘 + (𝜏𝛿)𝑗𝑘 + 𝜀𝑖𝑗𝑘         {
𝑖 = 1, 2, … , 𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
𝑗 = 1, 2, … , 𝑝 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠   
𝑘 = 1, 2, … , 𝑞 𝑡𝑟𝑒𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

            (1) 

where  

𝑌𝑖𝑗𝑘 is the response variable score of the 𝑖𝑗𝑘𝑡ℎ observation 

𝑋𝑖𝑗𝑘 is fixed covariate score of the 𝑖𝑗𝑘𝑡ℎ observation 

𝛽 is the linear regression coefficient 𝑌 on 𝑋 

𝜏𝑗, 𝛿𝑘 are random effects of treatment 𝑗 and treatment 𝑘, respectively 

(𝜏𝛿)𝑗𝑘is the random interaction effect of the 𝑗𝑘𝑡ℎ combination 

𝜀𝑖𝑗𝑘 is the error component such that 𝜀𝑖𝑗𝑘~𝑁(0, 𝜎𝜀
2)  

By structure, the model (1) assumes the following (Arnold, 1981; Christensen, 2011; Keppel 

and Winkens, 2004; Montgomery, 2013;): 

1. Randomization: randomly selecting subjects from some defined population and 

randomly and independently assigning subjects to treatment groups. 

2. Homogeneity of within-group regressions. 

3. Statistical independence of covariate and treatment. 

4. Fixed covariate values that are error free. 

5. Linearity of within-group regressions. 

6. Normality of conditional 𝑌 scores. 

7. Homogeneity of variance of conditional 𝑌 scores. 

8. Random treatment levels.    

This model, however, does not depict the presence of atypical observations, e.g. due to the 

occurrence of overdispersion or heterogeneity caused by the covariate (Wu, 2010; Dornheim 

and Brazauskas, 2011).  When there is overdispersion or heterogeneity, some of the very 

important assumptions are not met such as assumptions 2 and 5 to 7 above. This problem has 
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substantial consequences to the bias of the ANCOVA F-statistic as cited by Huitema (1980), 

i.e., the bias introduced into the analysis by nonnormality of the dependent variable is greater 

when 𝑋 is not normally distributed. In lieu of this problem, to account the varying effect of 

covariate across treatment-level factors, its effect on the dependent variable was postulated in 

a nonparametric framework.     

 

3.  Postulated Semiparametric Mixed ANCOVA Model 

A semiparametric mixed ANCOVA model is postulated with nonparametric fixed 

covariate and parametric random effects. This is given by  

   𝑌𝑖𝑗𝑘 = 𝑓(𝑋𝑖𝑗𝑘) + 𝜏𝑗 + 𝛿𝑘 + (𝜏𝛿)𝑗𝑘 + 𝜀𝑖𝑗𝑘         {
𝑖 = 1, 2, … , 𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
𝑗 = 1, 2, … , 𝑝 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠   
𝑘 = 1, 2, … , 𝑞 𝑡𝑟𝑒𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

          (2) 

where  

𝑌𝑖𝑗𝑘 is the response variable score of the 𝑖𝑗𝑘𝑡ℎ observation 

𝑋𝑖𝑗𝑘 is fixed covariate score of the 𝑖𝑗𝑘𝑡ℎ observation 

𝑓(𝑋𝑖𝑗𝑘) is the smoothed function of 𝑋𝑖𝑗𝑘 (nonparametric) 

𝜏𝑗, 𝛿𝑘 are random effects of treatment 𝑗 and treatment 𝑘 respectively 

(𝜏𝛿)𝑗𝑘 is the random interaction effect of the 𝑗𝑘𝑡ℎ 
 combination 

𝜀𝑖𝑗𝑘 is the error component such that 𝜀𝑖𝑗𝑘~𝑁(0, 𝜎𝜀
2) 

The assumptions of the postulated model are as follows:  

1. 𝑌 is a continuous response variable. 

2. 𝑋 is fixed and a continuous covariate. The smoothed function of 𝑋 is used in lieu of 

varying coefficients of the covariate between treatment-level factors. 

3. 𝜏𝑗, 𝛿𝑘 are random effects. These components are used to address the effect of treatment 

levels. 

4. (𝜏𝛿)𝑗𝑘 is random interaction effect. This component is used to address the effect of 𝑗𝑘𝑡ℎ 

combination levels. 

5. The predictors are independent of each other. 

6. Randomization: randomly selecting subjects from some defined population and 

randomly and independently assigning subjects to treatment groups. 

 

4.  Estimation Procedure 

 This paper proposes two estimation procedures.  The first procedure is a modified, 

iterative estimation infusing the restricted maximum likelihood or REML (Corbeil and Searle, 

1976; Milliken and Johnson, 2009; Montgomery, 2013) and nonparametric regression via 

smoothing splines (Siminoff, 1996; Wang, 2011) into a backfitting framework (Hastie and 

Tibshirani 1990; Wood, 2006).  The second procedure incorporates a bootstrap approach 

(Davison and Hinkley, 1997; Mooney and Duval, 1993) on the first procedure.  The 

performance of these proposed procedures is evaluated in the postulated model (2) through 

simulated data.  From this point onwards, the first procedure is named as ANCOVA via REML 

with splines or ARMS, and the second procedure as Bootstrap ANCOVA via REML with 

splines or B-ARMS. 

The main idea of the ARMS procedure is to alternately estimate the parametric part 

corresponding to the variance components for the random-effects model and the nonparametric 

part corresponding to the smooth function of the covariate.  The method can mitigate 

contamination where the conventional REML may possibly become problematic because of its 

assumptions of normality.  The variance components are first estimated using the REML by 

ignoring the effect of the nonparametric component. The smooth function of covariate is then 

estimated via nonparametric regression using the residuals computed after fitting the model 
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with only the estimated parametric components. In the B-ARMS approach, the estimates 

obtained in ARMS are used and resampling with replacement of the residuals is applied.  

Details are discussed in the succeeding sections. 

 

Algorithm of ARMS 

Step1. Using the REML method, fit the parametric part of the model by ignoring 𝑓(𝑋𝑖𝑗𝑘) so 

that the random-effects model would be  

𝑌𝑖𝑗𝑘 = 𝜏𝑗 + 𝛿𝑘 + (𝜏𝛿)𝑗𝑘 + 𝜀𝑖𝑗𝑘 

This contains the estimates of the variance components. We are of course much 

interested in the estimation of variance components over the means under a random-

effects model. 

Step2. Compute the partial residuals 𝑒𝑖𝑗𝑘 = 𝑌𝑖𝑗𝑘 − 𝑌̂𝑖𝑗𝑘.  The partial residuals contain 

information on 𝑓(𝑋𝑖𝑗𝑘) and thus will be used to estimate the 𝑓(𝑋𝑖𝑗𝑘). 

Step3. Estimate 𝑓(𝑋𝑖𝑗𝑘) nonparametrically using smoothing spline. 

Step4. Compute the new partial residuals 𝑒𝑖𝑗𝑘
∗ = 𝑌𝑖𝑗𝑘 − 𝑓(𝑋𝑖𝑗𝑘). The new partial residuals 

contain information on the parametric part and thus will be used to estimate the variance 

components in Step 1. 

Step5. Repeat Step1 to Step4 until 𝑓(𝑋𝑖𝑗𝑘) and the variance components estimates do not 

change more than the tolerance level (say, 0.001). 

 

Algorithm of B–ARMS 

Step1.  Obtain the initial estimates and residuals 𝜙𝑖𝑗𝑘 = 𝑌𝑖𝑗𝑘 − 𝑌̂𝑖𝑗𝑘by fitting the model (2) 

using ARMS. The residuals are used to obtain 𝑅 bootstrap samples of residuals in Step2 

below while the estimates are used to compute the new values of dependent variable in 

Step3 below. 

Step2.  Sample 𝜙𝑖𝑗𝑘 (Step1) with replacement from {1, 2, …, n} to have new set of residuals 

𝜙𝑖𝑗𝑘
∗ . The residuals 𝜙𝑖𝑗𝑘

∗  are used to compute the new values of 𝑌 in Step3. 

Step3.  Compute the new values of dependent variable by 

𝑌𝑖𝑗𝑘
∗ = 𝑓(𝑋𝑖𝑗𝑘) + 𝜏̂𝑗 + 𝛿𝑘 + (𝜏𝛿)̂𝑗𝑘 + 𝜙𝑖𝑗𝑘

∗  where 𝑓(𝑋𝑖𝑗𝑘), 𝜏̂𝑗 , 𝛿𝑘 and (𝜏𝛿)̂𝑗𝑘 are 

estimates from Step1 and new residuals 𝜙𝑖𝑗𝑘
∗  from Step2. 

Step4. Fit the model from the pseudo data in Step3 using ARMS. This contains the estimates 

of the variance components from the dependent variable 𝑌𝑖𝑗𝑘
∗ . 

Step5.  Repeat Step2 to Step4 𝑅 times. In this paper, 𝑅 =  200. 

 

5.  Simulation Study  

 The postulated model in this study with the estimation procedures will be evaluated 

using simulated data for balanced design. Each data set was composed of njk treatment 

combination size/replicate, j = 1, …, p treatments and k = 1, …, q treatments.  𝑌𝑖𝑗𝑘 was 

computed as a function of a covariate and the group-level factors following 𝑌𝑖𝑗𝑘 = 𝑓(𝑋𝑖𝑗𝑘) +

𝑚𝜏𝑗 + 𝑚𝛿𝑘 + (𝜏𝛿)𝑗𝑘 + 𝑤𝜀𝑖𝑗𝑘 where 𝑚 is a constant value used to determine the minimal or 

dominating effect of the covariate/factors. When the value of 𝑚 is small, the effect of covariate 

is dominating, i.e. approximately 75% of the variability in 𝑌 is explained by the covariate. 

When the value of 𝑚 is large, the effect of covariate is minimal, i.e. approximately 20% of the 

variability in 𝑌 is explained by the covariate.  The variability in 𝑌 explained by the covariate 

𝑋 is determined using a structure coefficient squared or Pearson correlation squared (𝑟𝑋,𝑌
2 ) 

between 𝑋 and 𝑌 (Nathans et al. (2012)).  
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The constant 𝑤 in 𝑌𝑖𝑗𝑘 = 𝑓(𝑋𝑖𝑗𝑘) + 𝑚𝜏𝑗 + 𝑚𝛿𝑘 + (𝜏𝛿)𝑗𝑘 + 𝑤𝜀𝑖𝑗𝑘 is used to induce the 

misspecification error. There is much misspecification in the model when the assigned value 

of 𝑤 is large.   Also, the 𝑓(𝑋𝑖𝑗𝑘) has two forms: linear and nonlinear functions. The linear 

function 𝑓(𝑋𝑖𝑗𝑘) = 𝛽𝑋𝑖𝑗𝑘 is generated from the normal distribution and subjected for 

contamination (5% and 10% of the treatment combinations). For the covariate contamination, 

a change in the value of 𝛽 is applied. The nonlinear function 𝑓(𝑋𝑖𝑗𝑘) = exp(𝛽𝑋𝑖𝑗𝑘) is 

generated from the exponential family and introduced in the model to manifest 

heterogeneity/overdispersion and to further verify the predictive ability of the proposed 

methods in the presence of nonlinearity/heterogeneity. Under this setting, the values of m as 

well as the variances of the factors were changed accordingly to satisfy the minimal/dominating 

effect of the covariate in the model.  

The treatment effects are assumed to be normally distributed. Table 1 summarizes the 

simulation settings. 

 

Table1. Boundaries of Simulation Study 

1. distribution of 𝑋𝑖𝑗𝑘 𝑋𝑖𝑗𝑘~𝑁(20,22)    

2. functional form of 𝑓(𝑋𝑖𝑗𝑘) 𝛽𝑋𝑖𝑗𝑘  

exp(𝛽𝑋𝑖𝑗𝑘)  

3. value of 𝛽 𝛽 = 1; 𝛽𝑐 = 0.05, 2 (contamination) 

4. distribution of 𝜏𝑗 𝜏𝑗~𝑁(0,1.52) ∗ 𝑚     

5. distribution of 𝛿𝑘 𝛿𝑘~𝑁(0,1.52) ∗ 𝑚  

6. distribution of (𝜏𝛿)𝑗𝑘 (𝜏𝛿)𝑗𝑘~𝑁(0,0.52)   

7. constant 𝑚 to adjust the 

contribution of   the 

covariate/factors on Y 

𝑚 = 0.5 and 1.7 

8. distribution of 𝜀𝑖𝑗𝑘 𝜀𝑖𝑗𝑘~𝑁(0,1)  

9. number of treatments: p, q small size – 2 levels for each factor 

medium size – 10 levels for each factor 

large size – 20 levels for each factor 

10. treatment combination/replicate 

size: n 

 small size – 2 

 medium size – 5 

 large size – 10 

11. misspecification error 𝑤 in the 

model 

𝑤 = 1, 5 

 

The simulated data was used to compare the proposed estimation procedures under the 

semiparametric mixed ANCOVA model to the conventional method, REML, through their 

mean absolute percentage error (MAPE), standard error of the variance components estimates 

(SE) and bias of the variance components estimates (BV or Bias). The MAPE tells the average 

percentage of the forecast errors to the actual values. The SE is the standard deviation of the 

variance components estimates. The closer the value of SE to zero, the more precise the 

estimate. When the BV is zero, the estimator is said to be unbiased. The method with smaller 

MAPE, SE and BV is considered better relative to other methods. The formulas are as follows: 

𝑀𝐴𝑃𝐸 =
1

𝑛𝑝𝑞
∑ ∑ ∑ |

𝑌𝑖𝑗𝑘 − 𝑌̂𝑖𝑗𝑘

𝑌𝑖𝑗𝑘
| ∗ 100

𝑞

𝑘=1

𝑝

𝑗=1

𝑛

𝑖=1
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𝑆𝐸 = √
1

𝑅 − 1
∑ (𝑉ℎ − 𝑉̅)2

𝑅

ℎ=1
 

BV = Bias = 𝑉 − 𝜃  

where  

 𝑛𝑝𝑞 is the total number of data points  

𝑅 is the total number of 𝑉ℎ observations 

𝑉ℎ is the ℎ𝑡ℎ variance of the specific component, and 𝑉 is the mean of 𝑉ℎ𝑠  

𝜃 is the true variance of the specific component 

 

6.   Results and Discussion 

 The predictive performance of the proposed semiparametric estimation procedures – 

namely the ANCOVA via REML with smoothing splines (ARMS) and the bootstrap 

ANCOVA via REML with smoothing splines (B-ARMS) – are compared with the 

conventional REML in terms of the MAPE. Also, the bias and standard error of the estimates 

of the variance components were compared to further evaluate the viability of the estimation 

procedures. Smaller values of MAPE, standard error and bias would indicate better estimates 

and better predictive ability. 

 

6.1  Contamination-free Case 

 The semiparametric model (2) is first assumed to have no heterogeneity and/or 

overdispersion to verify the performance of the proposed procedures under such ideal scenario.  

   

6.1.1 Effect of the degree of contribution of covariate 

The values of 𝑚 reflect the relative contribution of a covariate in the model. The 

covariate is dominating if the value of m is small, i.e. approximately 75% of the variability in 

𝑌 is explained by the covariate, while minimal role if the value of m is large, i.e. approximately 

20% of the variability in 𝑌 is explained by the covariate. As shown in Table 2, when there is a 

dominating covariate (𝑚 =  0.5), MAPE is lower compared to when there is a minimal 

covariate (𝑚 =  1.7) in the model. The magnitude of bias decreases as the degree of 

contribution of covariate increases. The proposed methods have biased estimates potentially 

because the REML method is incorporated in the procedures, as discussed by Searle et al. 

(2006), REML estimators are biased. Though the proposed methods provide biased estimates, 

the predictive ability is comparably better than REML.  

 

Table 2. Average MAPE, SE and Bias by covariate contribution for contamination-free 

scenario 

Scenarios Bias(𝜎̂𝜏
2) SE(𝜎̂𝜏

2) Bias(𝜎̂𝛿
2) SE(𝜎̂𝛿

2) Bias(𝜎̂𝜏𝛿
2 ) SE(𝜎̂𝜏𝛿

2 ) MAPE 

ARMS m = 0.5 -0.464 0.223 -0.472 0.227 -0.145 0.216 4.867 
m = 1.7 -5.942 1.347 -5.848 1.817 0.216 1.043 12.700 

B-ARMS m = 0.5 -0.416 0.209 -0.412 0.205 -0.113 0.185 4.367 
m = 1.7 -5.745 1.110 -5.570 1.176 0.338 0.940 11.267 

REML m = 0.5 -0.391 1.270 -0.490 0.166 -0.173 0.176 5.833 
m = 1.7 -5.938 1.240 -5.927 1.594 0.156 1.053 15.200 

 

6.1.2 Effect of the size of experiment 

 The experiment size is categorized into three, namely, small (2x2x2), medium 

(10x10x5) and large (20x20x10). Simulations (see Table 3 below) show slightly lower values 



8 
 

of MAPE for small experiments compared to large experiments for both proposed methods. 

ARMS and B-ARMS estimates are biased for all experiment sizes but still comparable to the 

classical REML. The magnitude of bias increases as the experiment size increases. However, 

the amount of standard error decreases as the experiment size increases. Overall, the proposed 

methods produce relatively better estimates and higher predictive ability for the different 

experiment sizes compared to REML. 

 

Table 3. Average MAPE, SE and Bias by experiment size for contamination-free scenario 

Scenarios Bias(𝜎̂𝜏
2) SE(𝜎̂𝜏

2) Bias(𝜎̂𝛿
2) SE(𝜎̂𝛿

2) Bias(𝜎̂𝜏𝛿
2 ) SE(𝜎̂𝜏𝛿

2 ) MAPE 

 

ARMS 

Small -2.255 2.044 -2.153 2.648 0.394 1.492 7.267 
Medium -3.074 0.059 -3.075 0.056 -0.146 0.163 9.000 
Large -3.100 0.009 -3.100 0.011 -0.231 0.030 9.000 

 

B-ARMS 

small -1.925 1.729 -1.695 1.805 0.624 1.376 5.967 
medium -3.068 0.050 -3.069 0.049 -0.163 0.125 8.233 
Large -3.099 0.008 -3.099 0.008 -0.231 0.029 8.300 

 

REML 

small -2.174 2.946 -2.275 2.298 0.298 1.489 8.500 
medium -3.076 0.051 -3.078 0.046 -0.164 0.137 10.767 
Large -3.101 0.008 -3.100 0.008 -0.234 0.027 10.933 

 

6.1.3 Comparison of the proposed methods and REML 

 In general, the proposed estimation procedures exhibit reasonable results in the absence 

of heterogeneity/nonlinearity/outliers (see Table 4). The procedures produced considerably 

smaller MAPE than REML. The B-ARMS had the smallest value of MAPE and standard error 

compared to the others. In terms of bias, the three methods are at par.  

 

Table 4. Average MAPE, SE and Bias by methods for contamination-free scenario 

Method Bias(𝜎̂𝜏
2) SE(𝜎̂𝜏

2) Bias(𝜎̂𝛿
2) SE(𝜎̂𝛿

2) Bias(𝜎̂𝜏𝛿
2 ) SE(𝜎̂𝜏𝛿

2 ) MAPE 

ARMS -2.809 0.704 -2.776 0.905 0.006 0.562 8.422 
B-ARMS -2.697 0.595 -2.621 0.621 0.077 0.510 7.500 

REML -2.784 1.002 -2.818 0.784 -0.033 0.551 10.067 

 

 

6.2  Contamination Case 

In this scenario, contamination in the covariate was incorporated to evaluate the 

performance of the proposed procedures. Two levels of contamination (5% and 10%) 

corresponding to two values of 𝛽𝑐 (0.5 and 2) were considered.  

 

6.2.1 Effect of the degree of contribution of covariate 

 As shown in Table 5, with 𝛽𝑐 = 0.05, when there is a dominating covariate (𝑚 =  0.5), 

MAPE is slightly greater compared to when there is a minimal covariate (𝑚 =  1.7) in the 

model. This is true for both low level (5%) and high level (10%) of contaminations. Note 

however that as more observations are contaminated in the covariate, predictive ability 

deteriorates.  
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Table 5. Average MAPE, SE and Bias by covariate contribution for contamination scenario 

(𝛽𝑐 = 0.05) 

Scenarios Bias(𝜎̂𝜏
2) SE(𝜎̂𝜏

2) Bias(𝜎̂𝛿
2) SE(𝜎̂𝛿

2) Bias(𝜎̂𝜏𝛿
2 ) SE(𝜎̂𝜏𝛿

2 ) MAPE 

5 %        

ARMS m = 0.5 11.962 0.373 -0.528 0.054 4.063 0.290 24.150 
m = 1.7 5.189 0.838 -6.406 0.154 3.392 0.784 15.850 

B-ARMS m = 0.5 12.228 0.182 -0.523 0.026 4.272 0.136 17.600 
m = 1.7 6.209 0.430 -6.397 0.069 4.079 0.350 15.500 

REML m = 0.5 -0.557 0.010 -0.558 0.008 -0.233 0.029 33.850 
m = 1.7 -6.471 0.055 -6.473 0.051 -0.153 0.153 26.900 

10 %        

ARMS m = 0.5 22.902 0.800 -0.462 0.236 -0.133 0.318 35.100 
m = 1.7 17.373 2.546 -5.775 1.761 0.306 1.168 23.467 

B-ARMS m = 0.5 22.981 0.400 -0.417 0.190 -0.082 0.173 30.100 
m = 1.7 17.701 1.468 -5.615 1.102 0.424 0.873 21.767 

REML m = 0.5 -0.347 1.012 -0.450 0.441 -0.173 0.179 58.467 
m = 1.7 -5.154 4.934 -5.646 2.356 0.178 1.056 36.667 

 

Moreover, the variance component estimates are biased for the three methods with 

different degrees of contribution of covariate at different levels of contamination. ARMS and 

B-ARMS 𝜎̂𝜏
2

 
estimates are more biased than REML 𝜎̂𝜏

2

 
estimates because contamination is 

contained within one-group level only for the factor 𝜏. The methods ARMS and B-ARMS are 

based on the backfitting algorithm that estimate first the random effect in the model, and the 

error variance is estimated last, thus resulting to larger errors.  Such observation is similar to 

those cited by Santos and Barrios (2012). 

When 𝛽𝑐 = 2, with dominating covariate, smaller MAPE is observed than when the 

covariate has minimal role in the model (see Table 6 for details). This is true for both 5% and 

10% contamination in the data. ARMS and B-ARMS estimates for 𝜎̂𝜏
2

 
are still more biased than 

REML 𝜎̂𝜏
2

 
estimates, in the same context, due to the inherent backfitting algorithm. 

 

Table 6. Average MAPE, SE and Bias by covariate contribution for contamination scenario 

(𝛽𝑐 = 2) 

Scenarios Bias(𝜎̂𝜏
2) SE(𝜎̂𝜏

2) Bias(𝜎̂𝛿
2) SE(𝜎̂𝛿

2) Bias(𝜎̂𝜏𝛿
2 ) SE(𝜎̂𝜏𝛿

2 ) MAPE 

5 %        

 

ARMS 

m = 0.5 7.222 0.606 -1.102 0.036 2.366 0.411 5.800 
m = 1.7 3.256 0.715 -3.769 0.096 1.068 0.618 15.100 

B-ARMS m = 0.5 7.656 0.212 -1.095 0.028 2.633 0.159 5.450 
m = 1.7 4.443 0.515 -3.741 0.081 1.550 0.410 14.000 

REML m = 0.5 -1.119 0.010 -1.120 0.008 -0.233 0.029 13.400 
m = 1.7 -3.793 0.055 -3.795 0.051 -0.153 0.153 34.200 

10 %        

ARMS m = 0.5 15.232 1.270 -1.027 0.225 -0.148 0.271 8.533 
m = 1.7 12.687 2.774 -3.102 1.761 0.280 1.145 18.867 

B-ARMS m = 0.5 15.533 0.467 -0.982 0.199 -0.109 0.176 8.567 
m = 1.7 13.334 1.704 -2.931 1.127 0.409 0.926 21.267 

REML m = 0.5 -0.903 1.085 -1.008 0.445 -0.174 0.178 18.633 
m = 1.7 -2.503 5.379 -3.006 2.383 0.180 1.069 43.633 
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6.2.2 Effect of experiment size 

 The two proposed methods show lower values of MAPE for small experiment size than 

the REML as shown in Table 7 and Table 8. This is true for 𝛽𝑐 = 0.05 and 𝛽𝑐 = 2. ARMS and 

B-ARMS estimates are biased for all experiment size but still comparable to the classical 

REML except for 𝜎̂𝜏
2 component. Again, this is because contamination is contained within one-

group level only for the factor τ and the ARMS and B-ARMS procedures estimate first the 

random effect in the model. However, the amount of standard error decreases as the experiment 

size increases. 
 

Table 7. Average MAPE, SE and Bias by experiment size for contamination case (𝛽𝑐 = 0.05) 

Scenarios Bias(𝜎̂𝜏
2) SE(𝜎̂𝜏

2) Bias(𝜎̂𝛿
2) SE(𝜎̂𝛿

2) Bias(𝜎̂𝜏𝛿
2 ) SE(𝜎̂𝜏𝛿

2 ) MAPE 

5 %        

ARMS medium 3.221 0.798 -2.989 0.184 7.689 0.979 18.633 
large 14.837 0.377 -3.098 0.013 -0.215 0.050 24.067 

B-ARMS medium 4.401 0.412 -2.974 0.087 8.589 0.456 15.867 
large 14.890 0.187 -3.099 0.005 -0.224 0.019 18.900 

REML medium -3.076 0.051 -3.079 0.046 -0.164 0.138 37.600 
large -3.100 0.008 -3.100 0.008 -0.234 0.027 35.733 

10 %        

 

ARMS 

small -2.033 2.613 -2.056 2.551 0.467 1.779 17.700 
medium 32.664 1.530 -3.064 0.084 -0.098 0.218 43.867 
large 30.973 0.536 -3.098 0.012 -0.215 0.048 40.600 

 

B-ARMS 

small -1.700 1.680 -1.762 1.709 0.749 1.325 13.300 
medium 32.854 0.702 -3.070 0.028 -0.130 0.073 41.433 
large 31.010 0.221 -3.100 0.004 -0.227 0.014 38.700 

 

REML 

small -1.023 8.136 -1.832 3.923 0.324 1.505 61.167 
medium -3.076 0.052 -3.079 0.045 -0.164 0.137 57.000 
large -3.101 0.008 -3.100 0.008 -0.234 0.027 62.000 

 

 Table 8. Average MAPE, SE and Bias by experiment size for contamination case (𝛽𝑐 = 2) 

Scenarios Bias(𝜎̂𝜏
2) SE(𝜎̂𝜏

2) Bias(𝜎̂𝛿
2) SE(𝜎̂𝛿

2) Bias(𝜎̂𝜏𝛿
2 ) SE(𝜎̂𝜏𝛿

2 ) MAPE 

5 %        

ARMS medium 0.451 0.735 -2.332 0.112 3.454 1.001 9.467 
large 9.242 0.687 -2.394 0.011 -0.228 0.033 10.333 

B- ARMS medium 1.849 0.448 -2.299 0.094 4.263 0.511 8.567 
large 9.746 0.252 -2.394 0.008 -0.229 0.030 9.800 

REML medium -2.371 0.051 -2.374 0.046 -0.164 0.138 21.433 
large -2.395 0.008 -2.395 0.008 -0.234 0.027 22.267 

10 %        

 

ARMS 

small -1.359 2.515 -1.344 2.566 0.465 1.747 9.233 
medium 20.617 2.731 -2.367 0.058 -0.132 0.178 14.233 
large 19.748 0.898 -2.394 0.012 -0.227 0.034 14.000 

 

B-ARMS 

small -1.036 1.696 -1.051 1.738 0.720 1.336 7.600 
medium 21.759 1.006 -2.363 0.050 -0.151 0.128 14.367 
large 20.743 0.352 -2.393 0.008 -0.230 0.029 17.667 

 

REML 

small -0.300 9.026 -1.201 3.841 0.313 1.482 15.967 
medium -2.371 0.052 -2.374 0.046 -0.164 0.137 30.600 
large -2.396 0.008 -2.395 0.008 -0.234 0.027 36.433 
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6.2.3 Comparison of the proposed methods and REML 

 Generally, looking at the result of the contamination of covariate either in low or large 

values of 𝛽𝑐, between the two proposed methods, B-ARMS has a good predictive ability and 

stability of the estimates as manifested in the lower MAPE and standard error, respectively (see 

Table 9). ARMS and B-ARMS have lower value of MAPE compared to REML.  

 

Table 9. Average MAPE, SE and Bias by methods for contamination scenario 

Method Bias(𝜎̂𝜏
2) SE(𝜎̂𝜏

2) Bias(𝜎̂𝛿
2) SE(𝜎̂𝛿

2) Bias(𝜎̂𝜏𝛿
2 ) SE(𝜎̂𝜏𝛿

2 ) MAPE 

𝛽𝑐 = 0.05        

ARMS 14.782 1.074 -2.891 0.490 1.894 0.598 27.703 
B-ARMS 15.184 0.583 -2.840 0.313 2.157 0.354 24.264 
REML -2.744 1.381 -2.880 0.676 -0.112 0.319 48.361 

𝛽𝑐 = 2        

ARMS 8.924 1.379 -2.199 0.470 0.824 0.585 11.194 
B-ARMS 9.810 0.684 -2.141 0.325 1.065 0.384 11.197 
REML -2.036 1.529 -2.187 0.662 -0.113 0.316 24.758 

 

Meanwhile, the two proposed methods outperform the REML method in terms of 

predictive ability. Also, the magnitude of bias of the estimates of variance components for the 

two methods proposed are comparable except for 𝜎̂𝜏
2 component. Again, this is because 

contamination is contained within one-group level only for the factor τ and the ARMS and B-

ARMS procedures estimate first the random effect in the model.  

 

6.3 Model Misspecification 

 Misspecification was applied in the model particularly in the error term to further 

investigate the performance of the proposed procedures with the postulated model. This was 

done by multiplying a considerable large value, say 5, to the error term to exhibit much variance 

of the residuals.  

 

6.3.1 Effect of the degree of contribution of covariate 

 When there is a dominating covariate (𝑚 = 0.5), MAPE values are lower compared to 

when there is a minimal covariate (𝑚 = 1.7) in the model. The three methods produced biased 

estimates for the different degrees of contribution of covariate. The magnitude of bias decreases 

as the degree of contribution of covariate increases.  

 

Table 10. Average MAPE, SE and Bias by covariate contribution for misspecification case 

Scenarios Bias(𝜎̂𝜏
2) SE(𝜎̂𝜏

2) Bias(𝜎̂𝛿
2) SE(𝜎̂𝛿

2) Bias(𝜎̂𝜏𝛿
2 ) SE(𝜎̂𝜏𝛿

2 ) MAPE 

ARMS m = 0.5 0.371 1.946 0.286 1.699 1.046 2.595 19.600 
m = 1.7 -5.060 3.026 -5.207 3.034 1.221 2.855 35.867 

B-ARMS m = 0.5 0.779 1.976 0.740 1.967 1.067 1.759 17.400 
m = 1.7 -4.526 3.006 -4.483 2.971 1.415 2.504 31.167 

REML m = 0.5 0.291 1.821 0.221 1.701 0.821 2.165 24.067 
m = 1.7 -5.165 3.009 -5.371 2.424 1.086 2.834 43.667 

 

6.3.2 Effect of experiment size 

 The two proposed methods show smaller values of MAPE for small experiment sizes 

as shown in Table 11. Cases under the small experiment size show lower MAPE compared to 
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those under the large experiment size. ARMS and B-ARMS variance estimates are biased 

across all experiment sizes and are comparable to the REML. The magnitude of bias increases 

as the experiment size increases. However, the amount of standard error decreases as the 

experiment size increases. Hence, it may be inferred that the proposed methods produce 

reasonable estimates and higher predictive ability for the different experiment size even in a 

misspecified model. 

 

Table 11. Average MAPE, SE and Bias by experiment size for misspecification scenario 

Scenarios Bias(𝜎̂𝜏
2) SE(𝜎̂𝜏

2) Bias(𝜎̂𝛿
2) SE(𝜎̂𝛿

2) Bias(𝜎̂𝜏𝛿
2 ) SE(𝜎̂𝜏𝛿

2 ) MAPE 

ARMS small 0.187 6.860 -0.149 6.545 3.348 7.167 18.800 
medium -2.971 0.228 -2.996 0.194 0.155 0.693 28.200 
large -3.081 0.041 -3.085 0.035 -0.177 0.133 30.700 

B-ARMS small 1.556 7.032 1.536 6.950 3.688 5.596 15.333 
medium -2.955 0.209 -2.965 0.204 0.116 0.523 25.833 
large -3.079 0.035 -3.081 0.033 -0.169 0.124 27.433 

REML small -0.052 6.737 -0.455 5.787 2.896 6.559 22.300 
medium -2.980 0.218 -3.007 0.169 0.083 0.583 34.033 
large -3.083 0.036 -3.089 0.029 -0.185 0.116 38.667 

 

6.3.3 Comparison of the proposed methods and REML 

 In general, the proposed estimation procedures are advantageous in increasing 

predictive ability and provide reasonable magnitude of bias and standard error in the presence 

of misspecification in the model (see Table 12). They have considerably smaller MAPE than 

the REML method. The B-ARMS has the smallest value of MAPE compared to other methods. 

ARMS, B-ARMS and REML estimates are at par in terms of the magnitude of bias.  

 

Table 12. Average MAPE, SE and Bias by methods for misspecification scenario 

Method Bias(𝜎̂𝜏
2) SE(𝜎̂𝜏

2) Bias(𝜎̂𝛿
2) SE(𝜎̂𝛿

2) Bias(𝜎̂𝜏𝛿
2 ) SE(𝜎̂𝜏𝛿

2 ) MAPE 

ARMS -1.955 2.376 -2.076 2.258 1.109 2.664 25.900 

B-ARMS -1.493 2.425 -1.503 2.396 1.212 2.081 22.867 

REML -2.039 2.330 -2.184 1.995 0.931 2.419 31.667 

 

6.4 Nonlinearity  

 This nonlinearity condition of the function 𝑓(𝑋𝑖𝑗𝑘) is addressed to further evaluate the 

behavior of the proposed methods when the data is nonlinear and/or 

heterogeneous/overdispersed. To simulate nonlinearity, exponential function was introduced 

to the covariate.  

 

6.4.1 Effect of the degree of contribution of covariate 

The three methods under the dominating covariate (𝑚 = 0.5) show lower value of 

MAPE compared to with the minimal covariate (𝑚 = 1.7) in the model as shown in Table 13. 

The magnitude of bias decreases as the degree of contribution of covariate increases for the 

two proposed methods. The REML produced more biased estimates than the ARMS and B-

ARMS for all degrees of contribution of the covariate. In addition, the REML produced higher 

values of MAPE than the ARMS and B-ARMS.  
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Table 13. Average MAPE, SE and Bias by covariate contribution for nonlinearity scenario 

Scenarios Bias(𝜎̂𝜏
2) SE(𝜎̂𝜏

2) Bias(𝜎̂𝛿
2) SE(𝜎̂𝛿

2) Bias(𝜎̂𝜏𝛿
2 ) SE(𝜎̂𝜏𝛿

2 ) MAPE 

ARMS m = 0.5 -203.44 46.09 -193.64 82.31 16.01 70.90 10.33 

m= 1.7 -2303.92 465.98 -2232.99 699.55 165.90 410.02 241.33 

B-ARMS m = 0.5 -189.70 48.64 -177.69 51.45 28.68 45.39 9.20 

m= 1.7 -2232.76 389.89 -2140.17 426.48 212.78 332.03 192.27 

REML m = 0.5 124041.78 123806.83 121462.88 123740.76 41.79 135.70 14.93 

m= 1.7 55698.64 58986.68 58692.99 77546.01 181.23 504.29 329.73 

 

6.4.2 Effect of experiment size 

The values of MAPE for the two methods proposed are smaller in all experiment sizes 

as shown in Table 14. Also, the three methods under the small experiment size have smaller 

values of MAPE and magnitude of bias compared to the medium and large experiment sizes. 

The REML produced more biased estimates than the ARMS and B-ARMS for most of the three 

experiment sizes. Furthermore, the REML produced higher values of MAPE than the ARMS 

and B-ARMS.  

 

Table 14. Average MAPE, SE and Bias by experiment size for nonlinearity scenario 

Scenarios Bias(𝜎̂𝜏
2) SE(𝜎̂𝜏

2) Bias(𝜎̂𝛿
2) SE(𝜎̂𝛿

2) Bias(𝜎̂𝜏𝛿
2 ) SE(𝜎̂𝜏𝛿

2 ) MAPE 

 

ARMS 

small -929.74 662.40 -821.33 1021 218.84 582.49 38.48 
medium -1198 18.32 -1198 19.20 23.73 50.51 168.85 
large -1206 2.97 -1206 3.71 -2.28 10.78 81.68 

B-ARMS small -816.84 569.79 -675.54 622.43 305.59 458.10 30.35 
medium -1196 16.61 -1196 16.62 19.33 41.43 125.18 
large -1206 2.65 -1206 2.66 -2.51 9.76 78.68 

 

REML 

small -839.08 888.94 -826.87 1069 285.61 812.86 60.94 
medium 115658 120132 115970 13650 23.65 51.67 226.59 
large 181067 182004 179531 183054 -1.65 11.11 109.07 

 

6.4.3 Comparison of the proposed methods and REML 

 Among the three methods, B-ARMS showed the smallest value of MAPE (see Table 

15). In general, when the nonlinearity/heterogeneity happens in the data caused by the 

covariate, the two proposed methods are preferable than the conventional REML. A big 

difference can be observed in the results of REML either in MAPE, bias or standard error from 

the two proposed procedures. This can be attributed to the fact that the REML procedure lacks 

the capacity to eliminate peculiar observations which distorts the results of the estimates and 

predictive ability in the presence of nonlinearity/heterogeneity/overdispersion. 

 

Table 15. Average MAPE, SE and Bias by methods for nonlinearity scenario 

Method Bias(𝜎̂𝜏
2) SE(𝜎̂𝜏

2) Bias(𝜎̂𝛿
2) SE(𝜎̂𝛿

2) Bias(𝜎̂𝜏𝛿
2 ) SE(𝜎̂𝜏𝛿

2 ) MAPE 

ARMS -1111 228 -1075 348.11 80.10 214.59 96.34 

B-ARMS -1073 196 -1026 213.90 107.47 169.76 78.07 

REML 98629 101008 98225 106876 102.53 291.88 132.20 

 

7.   Conclusions and Recommendations 

 A semiparametric mixed analysis of covariance model was postulated.  The covariate 

effect follows a nonparametic function while keeping the parametric formulation for the 

random-effects component. The nonparametric function is considered as a mitigation strategy 
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for the possible contamination and nonlinearity of the covariates in the presence of 

heterogeneity/overdispersion in the data. We proposed two estimation procedures, (1) based 

on the imbedded restricted maximum likelihood and nonparametric regression in the 

backfitting algorithm, and (2) infusing bootstrap into the hybrid backfitting algorithm to 

increase the predictive ability and to enhance stability in estimates of the variance components, 

while relaxing the usual assumption of linearity/homogeneity of within-group regressions. 

 The simulation study confirmed the advantages of the two estimation procedures over 

the conventional restricted maximum likelihood. The proposed procedures yield comparable 

mean absolute percentage error (MAPE) and estimates when there is a good linear fit 

(contamination free) in the model. In cases where there are contaminations, advantages in 

predictive ability are observed in favor of the proposed methods. In general, the two methods 

are more favorable and advantageous (in terms of both estimation and predictive ability) than 

REML when linear model fit is poor (heterogeneous/overdispersed data). Small sized 

experiments and dominating covariates are enough prerequisite to achieve increase in 

predictive ability and stability of variance component estimates using the proposed methods 

over REML.  

 Further studies on the effect of unbalanced design may be considered and two or more 

covariates to investigate further the performance of these methods. Contamination from a more 

complicated distributions may also be considered. Contamination for every group-level may 

also be considered. Aside from exponential distribution, other distributions might also be 

considered for overdispersion. 
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